scispace - formally typeset
Open AccessJournal ArticleDOI

On the Resistance Experienced by Spheres in their Motion through Gases

Paul S. Epstein
- 01 Jun 1924 - 
- Vol. 23, Iss: 6, pp 710-733
TLDR
In this article, the authors derived the force exerted by the impinging molecules leaving the surface depending on how they leave, assuming the usual Maxwellian distribution of velocities in the gas, the force was found to be M where M=(4π/3) Nma2cmV, N, m, a, and V being the number per unit volume, mass, radius, and mean speed of the molecules and V the speed of a droplet.
Abstract
Kinetic theory of the resistance to a sphere moving through a gas.— (1) Droplets small in comparison with the mean free path. The high degree of accuracy achieved in the experimental determination of the law of motions of droplets through gases, makes a careful theoretical examination of the problem desirable. Assuming the usual Maxwellian distribution of velocities in the gas, the force exerted by the impinging molecules is found to be M where M=(4π/3) Nma2cmV, N, m, a, and cm being the number per unit volume, mass, radius, and mean speed of the molecules and V the speed of the droplet. The force exerted by the molecules leaving the surface depends on how they leave. (1) For uniform evaporation from the whole surface, the force is -M; (2) for specular reflection of all the impinging molecules, -M; (3) for diffuse reflection with unchanged distribution of velocities, -(13/9)M; (4) for diffuse reflection with the Maxwell distribution corresponding to the effective temperature of the part of the surface they come from, -(1+9π/64)M, for a non-conducting droplet (4a), and -(1+π/8)M, for a perfectly conducting droplet (4b). Cases (1) and (2) can not be distinguished experimentally, but (2) is more probable physically. The experimental values agree with 1/10 specular reflection, case (2), and 9/10 diffuse reflection, case (4a) or (4b). For large values of l/a, the droplet behaves like a perfect conductor, case (4b). (2) Comparatively large spheres. The distribution of velocities is no longer Maxwellian because of the hydrodynamic stresses which can not now be neglected. The new law is derived (Eq. 47). The conditions at the surface of the sphere are discussed and it is shown that the diffusely reflected molecules have a Maxwellian distribution corresponding to the temperature and density of the gas, just as though they were reflected with conservation of velocity (specularly). The assumptions of Bassett are theoretically justified and a complete confirmation is obtained for the correction factor for Stokes' law [1+0.7004 (2/s-1) (l/a)] on which Millikan's conclusions are based, especially as to the percentage of specular reflection. (3) Rotating spheres are also considered in an appendix, and the values of the resistance are derived for various cases.

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

Complex (dusty) plasmas: current status, open issues, perspectives

TL;DR: The field of complex (dusty) plasmas is reviewed in this paper, where the major types of experimental complex Plasmas are briefly discussed, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species.
Journal ArticleDOI

The motion of bubbles in a vertical temperature gradient

TL;DR: In this article, it has been demonstrated that small bubbles in pure liquids can be held stationary or driven downwards by means of a sufficiently strong negative temperature gradient in the vertical direction, due to the stresses resulting from the thermal variation of surface tension at the bubble surface.
Journal ArticleDOI

Rapid growth of gas-giant cores by pebble accretion

TL;DR: In this article, the authors measured the accretion rate onto seed masses ranging from a large planetesimal to a fully grown 10-Earth-mass core and test different particle sizes, concluding that pebble accretion can resolve the long-standing core accretion timescale conflict.
Journal ArticleDOI

Settling and growth of dust particles in a laminar phase of a low-mass solar nebula

TL;DR: In this paper, the authors studied the settling and growth of dust particles in the subsequent laminar phase of the solar nebula in detail, treating a dust layer as a two-component fluid composed of the dust and the gas, and obtained analytic expressions for the settling path, the growing size, and the settling time.
Journal ArticleDOI

Complex plasmas: An interdisciplinary research field

TL;DR: Complex (dusty) plasmas are composed of a weakly ionized gas and charged microparticles and represent the plasma state of soft matter as discussed by the authors, and they can be easily manipulated in different ways, also at the level of individual particles.
Related Papers (5)