scispace - formally typeset
Open AccessPosted Content

PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search

Reads0
Chats0
TLDR
Partially-Connected Differentiable Architecture Search (PC-DARTS) as mentioned in this paper performs operation search in a subset of channels while bypassing the held out part in a shortcut, which alleviates the undesired inconsistency on selecting the edges of super-net caused by sampling different channels.
Abstract
Differentiable architecture search (DARTS) provided a fast solution in finding effective network architectures, but suffered from large memory and computing overheads in jointly training a super-network and searching for an optimal architecture. In this paper, we present a novel approach, namely, Partially-Connected DARTS, by sampling a small part of super-network to reduce the redundancy in exploring the network space, thereby performing a more efficient search without comprising the performance. In particular, we perform operation search in a subset of channels while bypassing the held out part in a shortcut. This strategy may suffer from an undesired inconsistency on selecting the edges of super-net caused by sampling different channels. We alleviate it using edge normalization, which adds a new set of edge-level parameters to reduce uncertainty in search. Thanks to the reduced memory cost, PC-DARTS can be trained with a larger batch size and, consequently, enjoys both faster speed and higher training stability. Experimental results demonstrate the effectiveness of the proposed method. Specifically, we achieve an error rate of 2.57% on CIFAR10 with merely 0.1 GPU-days for architecture search, and a state-of-the-art top-1 error rate of 24.2% on ImageNet (under the mobile setting) using 3.8 GPU-days for search. Our code has been made available at: this https URL.

read more

Citations
More filters
Journal ArticleDOI

AutoML: A survey of the state-of-the-art

TL;DR: A comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML methods according to the pipeline, covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS).
Posted Content

FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search

TL;DR: This paper proves that the biased evaluation of candidate models within a predefined search space is due to inherent unfairness in the supernet training, and proposes two levels of constraints: expectation fairness and strict fairness.
Proceedings ArticleDOI

Searching Central Difference Convolutional Networks for Face Anti-Spoofing

TL;DR: Yu et al. as discussed by the authors proposed a frame level FAS method based on Central Difference Convolution (CDC), which is able to capture intrinsic detailed patterns via aggregating both intensity and gradient information.
Posted Content

DARTS+: Improved Differentiable Architecture Search with Early Stopping.

TL;DR: It is claimed that there exists overfitting in the optimization of DARTS, and a simple and effective algorithm is proposed, named "DARTS+", to avoid the collapse and improve the original DARts, by "early stopping" the search procedure when meeting a certain criterion.
Posted Content

A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions

TL;DR: This survey provides a new perspective on the NAS starting with an overview of the characteristics of the earliest NAS algorithms, summarizing the problems in these earlyNAS algorithms, and then giving solutions for subsequent related research work.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.