scispace - formally typeset
Open AccessBook ChapterDOI

Photonic Bloch waves and photonic band gaps

Reads0
Chats0
TLDR
In this paper, the authors re-appraised propagation in structures that, while not exhibiting a complete photonic band gap (PBG), nevertheless display anomalous and intriguing propagation effects in the vicinity of their Bragg conditions.
Abstract
Photonic band gap materials are dielectrics with a synthetic, three dimensional, multiply periodic microstructure (lattice constant of order the optical wavelength) whose distinguishing feature is a very large modulation depth of refractive index. When appropriately designed, these “photonic crystals” exhibit ranges of optical frequency where light cannot exist — the photonic band gaps 7. The current interest in these materials 1–22 has led us to re-appraise propagation in structures that, while not exhibiting a complete photonic band gap (PBG), nevertheless display anomalous and intriguing propagation effects in the vicinity of their Bragg conditions54–58. In most cases, around each Bragg condition appear incomplete momentum and energy gaps (i.e., ranges of, respectively, wavevector and frequency where propagation is forbidden) with widths that are given approximately by the product of the index difference with, respectively, the vacuum wavevector and h times the optical frequency. With the exception of the multi-layer dielectric stack, most conventional electromagnetic gratings, such as those encountered in holography 27, waveguides 45, distributed feedback lasers 35,37,38, acousto-optic 47 and x-ray 61 diffraction, consist of weak periodic perturbations about a mean refractive index. In these gratings, while strong spatial and temporal dispersion are present around each Bragg condition, the ranges of angles and frequencies over which this occurs are very narrow; and although PBG’s do appear, they are incomplete and mostly very weak.

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

Single-Mode Photonic Band Gap Guidance of Light in Air.

TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Proceedings Article

Integrated optics

TL;DR: In this paper, the main theoretical and experimental developments to date in Integrated Optics are reviewed, including material considerations, guiding mechanisms, modulation, coupling and mode losses, as well as the fabrication and applications of periodic thin film structures.
Journal ArticleDOI

Manipulating light with strongly modulated photonic crystals

TL;DR: In this paper, the authors describe the way in which strongly modulated photonic crystals differ from other optical media, and clarify what they can do, including light confinement, frequency dispersion and spatial dispersion.
Journal ArticleDOI

Nonreciprocal magnetic photonic crystals

TL;DR: It is shown that by proper spatial arrangement of magnetic and dielectric components one can construct a magnetic photonic crystal with strong spectral asymmetry (nonreciprocity) omega(k-->) not equal omega(-k-->).
References
More filters
Book

Principles of Optics

Max Born, +1 more
TL;DR: In this paper, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.

Principles of Optics

Max Born, +1 more
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Journal ArticleDOI

Quantum theory of solids

Rudolf Peierls, +1 more
- 01 May 1956 - 
TL;DR: In this article, the interaction of light with non-conducting crystals has been studied in the context of crystal lattices and its applications in general theory and applications, such as semi-conductivity and superconductivity.
Book

Optical Waves in Layered Media

Pochi Yeh, +1 more
TL;DR: In this article, the Electromagnetic Field and its interaction with Matter are discussed, and a matrix formulation for Isotropic Layered Media is proposed. But it is not shown how to apply it to a single homogeneous and isotropic layer.