scispace - formally typeset
Open AccessJournal ArticleDOI

Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review

Reads0
Chats0
TLDR
In this paper, a review article draws on scientific literature to discuss inherent polymers typically used in plastics and their affinity for different organic contaminants, as well as the compositions, environmental factors, and polymeric properties that influence their variability in sorption capacities.
Abstract
Microplastics, which serve as sources and vector transport of organic contaminants in both terrestrial and marine environments, are emerging micropollutants of increasing concerns due to their potential harmful impacts on the environment, biota and human health. Microplastic particles have a higher affinity for hydrophobic organic contaminants due to their high surface area-to-volume ratio, particularly in aqueous conditions. However, recent findings have shown that the concentrations of organic contaminants adsorbed on microplastic surfaces, as well as their fate through vector distribution and ecological risks, are largely influenced by prevailing environmental factors and physicochemical properties in the aquatic environment. Therefore, this review article draws on scientific literature to discuss inherent polymers typically used in plastics and their affinity for different organic contaminants, as well as the compositions, environmental factors, and polymeric properties that influence their variability in sorption capacities. Some of the specific points discussed are (a) an appraisal of microplastic types, composition and their fate and vector transport in the environment; (b) a critical assessment of sorption mechanisms and major polymeric factors influencing organic contaminants-micro (nano) plastics (MNPs) interactions; (c) an evaluation of the sorption capacities of organic chemical contaminants to MNPs in terms of polymeric sorption characteristics including hydrophobicity, Van der Waals forces, π–π bond, electrostatic, and hydrogen bond interactions; and (d) an overview of the sorption mechanisms and dynamics behind microplastics-organic contaminants interactions using kinetic and isothermal models. Furthermore, insights into future areas of research gaps have been highlighted.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Degradation of plastics associated with the COVID-19 pandemic

TL;DR: In this paper , the degradation of personal protection equipment (PPE) in the marine environment and its consequences are poorly understood; however, in situ degradation experiments, including the colonization of PPE, are largely lacking.
Journal ArticleDOI

Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives

TL;DR: In this paper , the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods.
Journal ArticleDOI

Two-Dimensional Gallium Oxide Monolayer for Gas-Sensing Application.

TL;DR: Analyses of electronic structures and charge transport calculations indicate a potential application of the 2D Ga2O3 monolayer as a room-temperature NO gas-sensing device with high sensitivity and tunable adsorption energy using plenary strain-induced lattice distortion.
Journal ArticleDOI

Micro(nano)plastics Prevalence, Food Web Interactions, and Toxicity Assessment in Aquatic Organisms: A Review

TL;DR: In this article , a review mainly addresses the prevalence, food web interactions, and toxicity assessment of micro(nano) plastics in marine and freshwater organisms, and summarizes documented studies based on the following broad objectives: (1) the occurrence and prevalence of micro-nano-plastic plastic particles in marine environments; (2) the ingestion of MNPs by aquatic biota and the food web exposure routes and bioaccumulation of contaminated MNPs, and (3) the adsorption and desorption of persistent organic pollutants, metals, and chemical additives on/from micro-plastics; and (4) the probable ecotoxicological effects of microplastic ingestion on aquatic organisms.
Journal ArticleDOI

Personal protective equipment (PPE) pollution in the Caspian Sea, the largest enclosed inland water body in the world

TL;DR: In this paper , the authors assessed PPE pollution in the Iranian coast of the Caspian Sea, the largest enclosed inland water body in the world by following standard monitoring procedures, and the results concerning the density (1.02 × 10-4 PPE/m2) composition (face masks represented 95.3% of all PPE) were comparable to previous studies in marine waters.
References
More filters
Journal ArticleDOI

Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on lesvos island beaches (greece)

TL;DR: In this article, the authors investigated the sorptive properties of virgin and plastic eroded pellets (PEP) through distribution kinetic studies, and found that the PEP has higher diffusion coefficient than the virgin materials.
Journal ArticleDOI

Uptake of Polychlorinated Biphenyls (PCBs) from an Aqueous Medium by Polyethylene, Polyvinyl Chloride, and Polystyrene Films

TL;DR: Results from this study can be of practical importance for cases of product quality related to the transfer of contaminants from the product to the packaging materials.
Journal ArticleDOI

Sorption and desorption of selected pharmaceuticals by polyethylene microplastics.

TL;DR: The sorption process of the pharmaceuticals may be adequately described by their hydrophobicity and electrostatic interactions, and the potential risks of PRP and SER for bioaccumulation in aquatic organisms via ingestion of the microplastics in aquatic environments are indicated.
Journal ArticleDOI

Microplastics Generation: Onset of Fragmentation of Polyethylene Films in Marine Environment Mesocosms

TL;DR: In this article, the authors investigated the fragmentation of high-density polyethylene (HDPE) films from single-use supermarket plastic bags to microplastics under laboratory-simulated onshore and nearshore conditions.
Journal ArticleDOI

Microplastic Impacts on Microalgae Growth: Effects of Size and Humic Acid.

TL;DR: Investigating the impact on Scenedesmus obliquus exposed in five types of polystyrene particle suspensions with different sizes and surface charges identified important factors in determining the toxicity of MPs, providing valuable data for risk assessment of MPs.
Related Papers (5)