scispace - formally typeset
Open AccessJournal ArticleDOI

Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review

Reads0
Chats0
TLDR
In this paper, a review article draws on scientific literature to discuss inherent polymers typically used in plastics and their affinity for different organic contaminants, as well as the compositions, environmental factors, and polymeric properties that influence their variability in sorption capacities.
Abstract
Microplastics, which serve as sources and vector transport of organic contaminants in both terrestrial and marine environments, are emerging micropollutants of increasing concerns due to their potential harmful impacts on the environment, biota and human health. Microplastic particles have a higher affinity for hydrophobic organic contaminants due to their high surface area-to-volume ratio, particularly in aqueous conditions. However, recent findings have shown that the concentrations of organic contaminants adsorbed on microplastic surfaces, as well as their fate through vector distribution and ecological risks, are largely influenced by prevailing environmental factors and physicochemical properties in the aquatic environment. Therefore, this review article draws on scientific literature to discuss inherent polymers typically used in plastics and their affinity for different organic contaminants, as well as the compositions, environmental factors, and polymeric properties that influence their variability in sorption capacities. Some of the specific points discussed are (a) an appraisal of microplastic types, composition and their fate and vector transport in the environment; (b) a critical assessment of sorption mechanisms and major polymeric factors influencing organic contaminants-micro (nano) plastics (MNPs) interactions; (c) an evaluation of the sorption capacities of organic chemical contaminants to MNPs in terms of polymeric sorption characteristics including hydrophobicity, Van der Waals forces, π–π bond, electrostatic, and hydrogen bond interactions; and (d) an overview of the sorption mechanisms and dynamics behind microplastics-organic contaminants interactions using kinetic and isothermal models. Furthermore, insights into future areas of research gaps have been highlighted.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Degradation of plastics associated with the COVID-19 pandemic

TL;DR: In this paper , the degradation of personal protection equipment (PPE) in the marine environment and its consequences are poorly understood; however, in situ degradation experiments, including the colonization of PPE, are largely lacking.
Journal ArticleDOI

Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives

TL;DR: In this paper , the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods.
Journal ArticleDOI

Two-Dimensional Gallium Oxide Monolayer for Gas-Sensing Application.

TL;DR: Analyses of electronic structures and charge transport calculations indicate a potential application of the 2D Ga2O3 monolayer as a room-temperature NO gas-sensing device with high sensitivity and tunable adsorption energy using plenary strain-induced lattice distortion.
Journal ArticleDOI

Micro(nano)plastics Prevalence, Food Web Interactions, and Toxicity Assessment in Aquatic Organisms: A Review

TL;DR: In this article , a review mainly addresses the prevalence, food web interactions, and toxicity assessment of micro(nano) plastics in marine and freshwater organisms, and summarizes documented studies based on the following broad objectives: (1) the occurrence and prevalence of micro-nano-plastic plastic particles in marine environments; (2) the ingestion of MNPs by aquatic biota and the food web exposure routes and bioaccumulation of contaminated MNPs, and (3) the adsorption and desorption of persistent organic pollutants, metals, and chemical additives on/from micro-plastics; and (4) the probable ecotoxicological effects of microplastic ingestion on aquatic organisms.
Journal ArticleDOI

Personal protective equipment (PPE) pollution in the Caspian Sea, the largest enclosed inland water body in the world

TL;DR: In this paper , the authors assessed PPE pollution in the Iranian coast of the Caspian Sea, the largest enclosed inland water body in the world by following standard monitoring procedures, and the results concerning the density (1.02 × 10-4 PPE/m2) composition (face masks represented 95.3% of all PPE) were comparable to previous studies in marine waters.
References
More filters
Journal ArticleDOI

Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants.

TL;DR: It is exhibited that MPs sorption and interaction behavior towards organic contaminants play an important role in understanding its dynamics in the environment, as well as their possible interactions with pharmaceuticals that are summarized.
Journal ArticleDOI

Adsorption of chlorophenols on polyethylene terephthalate microplastics from aqueous environments: Kinetics, mechanisms and influencing factors.

TL;DR: Insight is provided into the fate of CPs in the presence of microplastics and suggests that the potential risks posed by CPs and microplastic to aqueous ecosystems merit further investigation.
Journal ArticleDOI

Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China.

TL;DR: Wang et al. as discussed by the authors focused on 30 pharmaceuticals and personal care products (PPCPs) found in the Baiyangdian basin of the Xiong'an New Area, in the core of Beijing-Tianjin-Hebei region, with intensive human interventions during two seasons.
Journal ArticleDOI

Microplastic in the stomachs of open-ocean and deep-sea fishes of the North-East Atlantic

TL;DR: The gut contents of 390 fishes belonging to three pelagic and two deep-sea species from the Azores archipelago, North-East Atlantic are investigated for microplastic contamination and it is revealed that pelagic species had significantly more microplastics than the deep-water species.
Journal ArticleDOI

Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase

TL;DR: In this paper, the pore volume diffusion model and surface diffusion model were also applied to interpret the rate of adsorption of TCs on two activated carbons (ACs).
Related Papers (5)