scispace - formally typeset
Journal ArticleDOI

Plant growth promoting rhizobacteria as biofertilizers

J. Kevin Vessey
- 16 Mar 2003 - 
- Vol. 255, Iss: 2, pp 571-586
TLDR
This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Abstract
Numerous species of soil bacteria which flourish in the rhizosphere of plants, but which may grow in, on, or around plant tissues, stimulate plant growth by a plethora of mechanisms. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The search for PGPR and investigation of their modes of action are increasing at a rapid pace as efforts are made to exploit them commercially as biofertilizers. After an initial clarification of the term biofertilizers and the nature of associations between PGPR and plants (i.e., endophytic versus rhizospheric), this review focuses on the known, the putative, and the speculative modes-of-action of PGPR. These modes of action include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses. The combination of these modes of actions in PGPR is also addressed, as well as the challenges facing the more widespread utilization of PGPR as biofertilizers.

read more

Citations
More filters
Journal ArticleDOI

Bacterial Modes of Action for Enhancing of Plant Growth

TL;DR: The previously characterized modes of action for enhancement of plant growth by PGPB such as nitrogen fixation, nutrient solubilization and production of auxins and enzymes are reviewed, as well as more recent proposed modes ofaction such as secondary metabolites.
Book ChapterDOI

Sustainable Crop Production and Soil Health Management Through Plant Growth-Promoting Rhizobacteria

TL;DR: In prospect to healthy and sustainable agriculture PGPR approach revealed as one of the best alternatives to chemical fertilizers.
Journal ArticleDOI

Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions

TL;DR: The isolate BS21-1 could effectively be used as one of the biocontrol agents for disease suppression in four vegetable crops through systemic resistance and for plant growth promotion.
Journal ArticleDOI

The Significance of Flavonoids in the Process of Biological Nitrogen Fixation.

TL;DR: The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
References
More filters
Journal ArticleDOI

Phosphate solubilizing bacteria and their role in plant growth promotion

TL;DR: Genetic manipulation of phosphate-solubilizing bacteria to improve their ability to improve plant growth may include cloning genes involved in both mineral and organic phosphate solubilization, followed by their expression in selected rhizobacterial strains.
Journal ArticleDOI

The enhancement of plant growth by free-living bacteria

TL;DR: The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed and the possibility of improving plant growth promotion by specific genetic manipulation is critically examined.
Journal ArticleDOI

Microbial interactions and biocontrol in the rhizosphere

TL;DR: Multiple microbial interactions involving bacteria and fungi in the rhizosphere are shown to provide enhanced biocontrol in many cases in comparison with biocOntrol agents used singly.
Journal ArticleDOI

Soil Fertility and Fertilizers

TL;DR: Soil fertility and fertilizers, Soil fertility, fertilizers and soil fertility and fertility, this paper, soil fertility, soil fertility, fertility, and fertilization, etc.
Journal ArticleDOI

A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria

TL;DR: It is argued that the simplest explanation for the observed biological activity of plant growth promoting rhizobacteria relates to the relative amounts of 1-aminocyclopropane-1-carboxylate deaminase and 1-amino-2-car boxylate oxidase in the system under consideration.
Related Papers (5)