scispace - formally typeset
Journal ArticleDOI

Plant growth promoting rhizobacteria as biofertilizers

J. Kevin Vessey
- 16 Mar 2003 - 
- Vol. 255, Iss: 2, pp 571-586
TLDR
This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Abstract
Numerous species of soil bacteria which flourish in the rhizosphere of plants, but which may grow in, on, or around plant tissues, stimulate plant growth by a plethora of mechanisms. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The search for PGPR and investigation of their modes of action are increasing at a rapid pace as efforts are made to exploit them commercially as biofertilizers. After an initial clarification of the term biofertilizers and the nature of associations between PGPR and plants (i.e., endophytic versus rhizospheric), this review focuses on the known, the putative, and the speculative modes-of-action of PGPR. These modes of action include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses. The combination of these modes of actions in PGPR is also addressed, as well as the challenges facing the more widespread utilization of PGPR as biofertilizers.

read more

Citations
More filters
Journal ArticleDOI

The rhizosphere microbiome and plant health

TL;DR: In this article, the authors discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere.
Journal ArticleDOI

Biological control of soil-borne pathogens by fluorescent pseudomonads

TL;DR: Biocontrol strains of fluorescent pseudomonads produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors during root colonization.
Journal ArticleDOI

Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture

TL;DR: The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.
Journal ArticleDOI

The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms

TL;DR: The main functions of rhizosphere microorganisms and how they impact on health and disease are reviewed and several strategies to redirect or reshape the rhizospheric microbiome in favor of microorganisms that are beneficial to plant growth and health are highlighted.
Journal ArticleDOI

Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

TL;DR: The latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.
References
More filters
Journal ArticleDOI

Colonization of wheat para‐nodules by the N2‐fixing cyanobacterium Nostoc sp. strain 2S9B

TL;DR: In plants treated with 2,4-D and co-cultivated with cyanobacteria in medium without combined nitrogen, the rate of acetylene reduction was three times that seen in untreated but colonized roots, and the nitrogen content of roots but not shoots was significantly increased.
Journal ArticleDOI

Selection of Tn5::lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature

TL;DR: Co-inoculation of mutants with their respective parent (1:1 ratio) to the wheat revealed that colonization potential of the mutants was affected greatly, and Tn5-lacZ tagged mutants MC48 and MA3 were found isogenic to their respective wild type Azospirillum strain, with regards to plant growth promoting activities and root colonization ability.
Journal ArticleDOI

Storage effects on indigenous soil microbial communities and PGPR efficacy

TL;DR: The hypothesis that storage-induced changes in the composition of soil microbial communities altered the efficacy of three Bacillus and three Pseudomonas plant growth promoting rhizobacteria (PGPR) strains on spruce seedlings is supported and contributes to variability in PGPR efficacy.
Related Papers (5)