scispace - formally typeset
Journal ArticleDOI

Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?

Reads0
Chats0
TLDR
In this paper, a hierarchical modeling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent framework, and it is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity.
Abstract
Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Predicting species distribution: offering more than simple habitat models.

TL;DR: An overview of recent advances in species distribution models, and new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales are suggested.
Journal ArticleDOI

Species Distribution Models: Ecological Explanation and Prediction Across Space and Time

TL;DR: Species distribution models (SDMs) as mentioned in this paper are numerical tools that combine observations of species occurrence or abundance with environmental estimates, and are used to gain ecological and evolutionary insights and to predict distributions across landscapes, sometimes requiring extrapolation in space and time.
Journal ArticleDOI

Impacts of climate change on the future of biodiversity.

TL;DR: Overall, this review shows that current estimates of future biodiversity are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered.
Journal ArticleDOI

Methods to account for spatial autocorrelation in the analysis of species distributional data : a review

TL;DR: In this paper, the authors describe six different statistical approaches to infer correlates of species distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations.
References
More filters
Journal ArticleDOI

Climate change 2001: the scientific basis

TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Journal ArticleDOI

Ecological responses to recent climate change.

TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Journal ArticleDOI

Predictive habitat distribution models in ecology

TL;DR: A review of predictive habitat distribution modeling is presented, which shows that a wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management.
Journal ArticleDOI

Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change

David John Griggs, +1 more
- 01 Aug 2002 - 
TL;DR: The terms of reference of the Intergovernmental Panel on Climate Change (IPCC) as discussed by the authors were defined by the World Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP).
Journal ArticleDOI

Range shifts and adaptive responses to Quaternary climate change.

TL;DR: The unprecedented rates of climate changes anticipated to occur in the future, coupled with land use changes that impede gene flow, can be expected to disrupt the interplay of adaptation and migration, likely affecting productivity and threatening the persistence of many species.
Related Papers (5)