scispace - formally typeset
Journal ArticleDOI

Projections of SO2, NOx, NH3 and VOC Emissions in East Asia Up to 2030

Reads0
Chats0
TLDR
In this article, the temporal development of the emissions of the four air pollutants is projected to the year 2030 based on scenarios of economic development, and the projections are prepared at a regional level and distinguish more than 100 source categories for each region.
Abstract
Starting from an inventory of SO2, NOx, VOC and NH3 emissions for the years 1990 and 1995 in East Asia (Japan, South and North Korea, China, Mongolia and Taiwan), the temporal development of the emissions of the four air pollutants is projected to the year 2030 based on scenarios of economic development. The projections are prepared at a regional level (prefectures or provinces of individual countries) and distinguish more than 100 source categories for each region. The emission estimates are presented with a spatial resolution of 1×1 degree longitude/latitude. First results suggest that, due to the emission control legislation taken in the region, SO2 emissions would only grow by about 46 percent until 2030. Emissions of NOx and VOC may increase by 95 and 65 percent, respectively, mainly driven by the expected increase in road traffic volume. Ammonia, mainly emitted from agriculture, is projected to double by 2030.

read more

Citations
More filters
Journal ArticleDOI

Enhanced nitrogen deposition over China

TL;DR: The impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural ecosystems and increased crop N uptake from long-term-unfertilized croplands.
Journal ArticleDOI

Asian emissions in 2006 for the NASA INTEX-B mission

TL;DR: In this article, a new inventory of air pollutant emissions in Asia in the year 2006 is developed to support the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) funded by the National Aeronautics and Space Administration (NASA).
Journal Article

An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 : NASA global tropospheric experiment transport and chemical evolution over the pacific (TRACE-P): Measurements and analysis (TRACEP1)

TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Journal ArticleDOI

An inventory of gaseous and primary aerosol emissions in Asia in the year 2000

Abstract: [1] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO2, 26.8 Tg NOx, 9870 Tg CO2, 279 Tg CO, 107 Tg CH4, 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH3. In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO2, 11.4 Tg NOx, 3820 Tg CO2, 116 Tg CO, 38.4 Tg CH4, 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH3. Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s × 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO2 to a high of ±450% for OC.
References
More filters
Book

World Agriculture: Towards 2015/2030: An Fao Perspective

TL;DR: The FAO's latest assessment of the long-term outlook for the world's food supplies, nutrition and agriculture is presented in this paper, where the projections cover supply and demand for the major agricultural commodities and sectors, including fisheries and forestry.
Journal ArticleDOI

A global high-resolution emission inventory for ammonia

TL;DR: A global emissions inventory for ammonia (NH3) has been compiled for the main known sources on a 1° × 1° grid, suitable for input to global atmospheric models as mentioned in this paper.
Journal ArticleDOI

A global inventory of volatile organic compound emissions from anthropogenic sources

TL;DR: The U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs.
Journal ArticleDOI

Anthropogenic NOx emissions in Asia in the period 1990–2020

TL;DR: In this article, the RAINS-ASIA methodology was used to estimate nitrogen oxides emissions in Asia during the period 1990-2020 due to anthropogenic activity, and the results highlight the dynamic nature of energy use in Asia.
Journal ArticleDOI

Vertical dispersion of suspended particulates in urban area of Hong Kong

TL;DR: In this article, the vertical distribution of suspended particulates at different height levels in an urban area of Hong Kong was evaluated using field data and four buildings in different street configurations and street environments were selected.
Related Papers (5)