scispace - formally typeset
Journal ArticleDOI

REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction

Reads0
Chats0
TLDR
The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract
Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

read more

Citations
More filters
Journal ArticleDOI

Mechanisms of salinity tolerance

TL;DR: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level and the role of the HKT gene family in Na(+) exclusion from leaves is increasing.
Journal ArticleDOI

Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants

TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.
Journal ArticleDOI

Reactive oxygen gene network of plants

TL;DR: In Arabidopsis, a network of at least 152 genes is involved in managing the level of ROS, and this network is highly dynamic and redundant, and encodes ROS-scavenging and ROS-producing proteins.
Journal ArticleDOI

Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions

TL;DR: The generation, sites of production and role of ROS as messenger molecules as well as inducers of oxidative damage are described and the antioxidative defense mechanisms operating in the cells for scavenging of ROS overproduced under various stressful conditions of the environment are described.
Journal ArticleDOI

The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms

TL;DR: Recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere are described.
References
More filters
Journal ArticleDOI

Genomic expression programs in the response of yeast cells to environmental changes.

TL;DR: Analysis of genomic expression patterns in the yeast Saccharomyces cerevisiae implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators.
Journal ArticleDOI

THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons

TL;DR: Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress.
Journal ArticleDOI

Plant pathogens and integrated defence responses to infection.

TL;DR: The current knowledge of recognition-dependent disease resistance in plants is reviewed, and a few crucial concepts are included to compare and contrast plant innate immunity with that more commonly associated with animals.
Journal ArticleDOI

AP-1 function and regulation.

TL;DR: This work has shown that regulation by heterodimerization between Jun, Fos and ATF proteins, AP-1 activity is regulated through interactions with specific protein kinases and a variety of transcriptional coactivators, and there has been considerable progress in understanding some of the mechanisms and signaling pathways involved in the regulation of AP.
Journal ArticleDOI

H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response

TL;DR: It is reported here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants.
Related Papers (5)