scispace - formally typeset
Open AccessJournal ArticleDOI

Recent advancement in haze removal approaches

TLDR
A detailed survey and experimental analysis on different dehazing methods can be found in this paper, which will help readers understand the effectiveness of the individual step of the de-hazing process and will facilitate development of advanced de haazing algorithms.
Abstract
Haze and fog are big reasons for road accidents. The haze occurrence in the air lowers the images quality captured by visible camera sensors. Haze brings inconvenience to numerous computer vision applications as it diminishes the scene visibility. Haze removal techniques recuperate the color and scene contrast. These haze removal techniques are extensively utilized in numerous applications like outdoor surveillance, object detection, consumer electronics, etc. Haze removal is commonly performed under the physical degradation model, which requires a solution of an ill-posed inverse issue. Different dehazing algorithms was recently proposed to relieve this difficulty and has acknowledged a great deal of consideration. Dehazing is basically accomplished through four major steps: hazy images acquisition process, estimation process (atmospheric light, transmission map, scattering phenomenon, and visibility or haze level), enhancement process (improved visibility level, reduce haze or noise level), restoration process (restore enhanced image, image reconstruction). This four-step dehazing process makes it possible to provide a step-by-step approach to the complex solution of the ill-posed inverse problem. Our detailed survey and experimental analysis on different dehazing methods that will help readers understand the effectiveness of the individual step of the dehazing process and will facilitate development of advanced dehazing algorithms. The overall objective of this review paper is to explore the various methods for efficiently removing the haze and short comings of the earlier presented techniques used in the revolutionary era of image processing applications.

read more

Citations
More filters
Journal ArticleDOI

Open-Set Signal Recognition Based on Transformer and Wasserstein Distance

TL;DR: Wang et al. as discussed by the authors proposed an efficient open-set signal recognition algorithm, which consists of three key sub-modules: the signal representation sub-module based on a vision transformer (ViT) structure, a set distance metric sub- module based on Wasserstein distance, and a class space compression sub-modal based on reciprocal point separation and central loss.
References
More filters
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Proceedings ArticleDOI

Bilateral filtering for gray and color images

TL;DR: In contrast with filters that operate on the three bands of a color image separately, a bilateral filter can enforce the perceptual metric underlying the CIE-Lab color space, and smooth colors and preserve edges in a way that is tuned to human perception.
Journal ArticleDOI

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Book ChapterDOI

Indoor segmentation and support inference from RGBD images

TL;DR: The goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships, to better understand how 3D cues can best inform a structured 3D interpretation.
Journal ArticleDOI

Single Image Haze Removal Using Dark Channel Prior

TL;DR: A simple but effective image prior - dark channel prior to remove haze from a single input image is proposed, based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.