scispace - formally typeset
Open AccessJournal ArticleDOI

Retinal Imaging and Image Analysis

Reads0
Chats0
TLDR
Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed and aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.
Abstract
Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.

TL;DR: A novel method that allows to directly detect the vessel crossings, as well as preserving the continuity of both arteries and veins at these complex locations, and achieves highly competitive results in the artery/vein classification, while significantly improving the vascular segmentation.
Posted Content

M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Resource-Constrained Environments

TL;DR: A novel neural network architecture for retinal vessel segmentation that improves over the state of the art on two benchmark datasets, is the first to run in real time on high resolution images, and its small memory and processing requirements make it deployable in mobile and embedded systems.
Journal ArticleDOI

Comparative analysis of deep learning methods of detection of diabetic retinopathy

TL;DR: A comparison between two widely used conventional architectures (DenseNet, ResNet) with the new optimized one (EfficientNet) is proposed and the proposed methods classify the retinal image as one of 5 class cases based on the dataset obtained from the 4th Asia Pacific Tele-Ophthalmology Society (APTOS) Symposium.
Journal ArticleDOI

Automatic Identification of Pathology-Distorted Retinal Layer Boundaries Using SD-OCT Imaging

TL;DR: In this article, an effective method for identification of four retinal layer boundaries from the spectral domain optical coherence tomography images in the presence and absence of pathologies and morphological changes due to disease was proposed.
References
More filters
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Journal ArticleDOI

Optical coherence tomography

TL;DR: OCT as discussed by the authors uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way analogous to ultrasonic pulse-echo imaging.
Journal ArticleDOI

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Related Papers (5)