scispace - formally typeset
Journal ArticleDOI

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets

Michael J. Frisch, +2 more
- 01 Apr 1984 - 
- Vol. 80, Iss: 7, pp 3265-3269
Reads0
Chats0
TLDR
In this paper, a modified basis set of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions were defined for use with the 6.31G and 6.311G basis sets.
Abstract
Standard sets of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions (f functions) are defined for use with the 6‐31G and 6‐311G basis sets. Preliminary applications of the modified basis sets to the calculation of the bond energy and hydrogenation energy of N2 illustrate that these functions can be very important in the accurate computation of reaction energies.

read more

Citations
More filters
Journal ArticleDOI

Conformational Change of Poly(N-isopropylacrylamide) during the Coil−Globule Transition Investigated by Attenuated Total Reflection/Infrared Spectroscopy and Density Functional Theory Calculation†

TL;DR: It is deduced from the DFT calculation that the relative intensity of the bands at 1173 and 1155 cm-1 in the amide III region reflects the population change in the gauche and trans conformations in the main chain during the coil-globule transition.
Journal ArticleDOI

KOtBu: A Privileged Reagent for Electron Transfer Reactions?

TL;DR: It is shown that direct electron transfer from KOtBu can however occur in appropriate cases, where the electron acceptor has a reduction potential near the oxidation potential of KOt Bu, and the example that is used is CBr4.
Journal ArticleDOI

Tests of second-generation and third-generation density functionals for thermochemical kinetics

TL;DR: In this article, the second and third generation density functionals, for pure density functional theory (DFT) and hybrid DFT, against the BH6 representative barrier height database and the AE6 representative atomization energy database, with augmented, polarized double and triple zeta basis sets.
Journal ArticleDOI

Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.

TL;DR: Revised estimated 0 K experimental activation enthalpies for a standard set of hydrocarbon pericyclic reactions and updated comparisons to experiment for DFT, ab initio, and multicomponent methods are reported.
Journal ArticleDOI

Ab initio transition state theory calculations of the reaction rate for OH+CH4→H2O+CH3

TL;DR: In this paper, the authors used Mo/ller-Plesset perturbation theory to calculate the correlation energy in second order (SAC2) with several large basis sets for the reaction OH+CH4→H2O+CH3.
References
More filters
Journal ArticleDOI

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions

TL;DR: In this article, a contract Gaussian basis set (6•311G) was developed by optimizing exponents and coefficients at the Mo/ller-Plesset (MP) second-order level for the ground states of first-row atoms.
Journal ArticleDOI

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules

TL;DR: In this article, two extended basis sets (termed 5-31G and 6 -31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms carbon to fluorine.
Journal ArticleDOI

The influence of polarization functions on molecular orbital hydrogenation energies

TL;DR: In this paper, a split-valence extended gaussian basis set was used to obtain the LCAO-MO-SCF energies of closed shell species with two non-hydrogen atoms.
Journal ArticleDOI

Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules

TL;DR: In this article, an extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first row atoms carbon to fluorine, where each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively.
Journal ArticleDOI

Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals

TL;DR: In this article, a least square representation of Slater-type atomic orbitals as a sum of Gaussian-type orbitals is presented, where common Gaussian exponents are shared between Slater−type 2s and 2p functions.
Related Papers (5)