scispace - formally typeset
Open Access

Semi-supervised learning with graphs

Reads0
Chats0
TLDR
A series of novel semi-supervised learning approaches arising from a graph representation, where labeled and unlabeled instances are represented as vertices, and edges encode the similarity between instances are presented.
Abstract
In traditional machine learning approaches to classification, one uses only a labeled set to train the classifier. Labeled instances however are often difficult, expensive, or time consuming to obtain, as they require the efforts of experienced human annotators. Meanwhile unlabeled data may be relatively easy to collect, but there has been few ways to use them. Semi-supervised learning addresses this problem by using large amount of unlabeled data, together with the labeled data, to build better classifiers. Because semi-supervised learning requires less human effort and gives higher accuracy, it is of great interest both in theory and in practice. We present a series of novel semi-supervised learning approaches arising from a graph representation, where labeled and unlabeled instances are represented as vertices, and edges encode the similarity between instances. They address the following questions: How to use unlabeled data? (label propagation); What is the probabilistic interpretation? (Gaussian fields and harmonic functions); What if we can choose labeled data? (active learning); How to construct good graphs? (hyperparameter learning); How to work with kernel machines like SVM? (graph kernels); How to handle complex data like sequences? (kernel conditional random fields); How to handle scalability and induction? (harmonic mixtures). An extensive literature review is included at the end.

read more

Content maybe subject to copyright    Report

Citations
More filters

Active Learning Literature Survey

Burr Settles
TL;DR: This report provides a general introduction to active learning and a survey of the literature, including a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date.
Proceedings ArticleDOI

Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales

TL;DR: A meta-algorithm is applied, based on a metric labeling formulation of the rating-inference problem, that alters a given n-ary classifier's output in an explicit attempt to ensure that similar items receive similar labels.
Journal ArticleDOI

A survey on semi-supervised learning

TL;DR: This survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches and algorithms developed over the past two decades, with an emphasis on the most prominent and currently relevant work.
Proceedings ArticleDOI

Retrofitting Word Vectors to Semantic Lexicons

TL;DR: This article proposed a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed.
References
More filters
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Journal ArticleDOI

Latent dirichlet allocation

TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Proceedings Article

Latent Dirichlet Allocation

TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).