scispace - formally typeset
Journal ArticleDOI

Semiempirical hybrid density functional with perturbative second-order correlation

Stefan Grimme
- 18 Jan 2006 - 
- Vol. 124, Iss: 3, pp 034108-034108
TLDR
The uniformity with which B2-PLYP improves for a wide range of chemical systems emphasizes the need of (virtual) orbital-dependent terms that describe nonlocal electron correlation in accurate exchange-correlation functionals.
Abstract
A new hybrid density functional for general chemistry applications is proposed. It is based on a mixing of standard generalized gradient approximations GGAs for exchange by Becke B and for correlation by Lee, Yang, and Parr LYP with Hartree-Fock HF exchange and a perturbative second-order correlation part PT2 that is obtained from the Kohn-Sham GGA orbitals and eigenvalues. This virtual orbital-dependent functional contains only two global parameters that describe the mixture of HF and GGA exchange ax and of the PT2 and GGA correlation c, respectively. The parameters are obtained in a least-squares-fit procedure to the G2/97 set of heat of formations. Opposed to conventional hybrid functionals, the optimum ax is found to be quite large 53% with c=27% which at least in part explains the success for many problematic molecular systems compared to conventional approaches. The performance of the new functional termed B2-PLYP is assessed by the G2/97 standard benchmark set, a second test suite of atoms, molecules, and reactions that are considered as electronically very difficult including transition-metal compounds, weakly bonded complexes, and reaction barriers and comparisons with other hybrid functionals of GGA and meta-GGA types. According to many realistic tests, B2-PLYP can be regarded as the best general purpose density functional for molecules e.g., a mean absolute deviation for the two test sets of only 1.8 and 3.2 kcal/mol compared to about 3 and 5 kcal/mol, respectively, for the best other density functionals. Very importantly, also the maximum and minium errors outliers are strongly reduced by about 10‐20 kcal/mol. Furthermore, very good results are obtained for transition state barriers but unlike previous attempts at such a good description, this definitely comes not at the expense of equilibrium properties. Preliminary calculations of the equilibrium bond lengths and harmonic vibrational frequencies for diatomic molecules and transition-metal complexes also show very promising results. The uniformity with which B2-PLYP improves for a wide range of chemical systems emphasizes the need of virtual orbital-dependent terms that describe nonlocal electron correlation in accurate exchange-correlation functionals. From a practical point of view, the new functional seems to be very robust and it is thus suggested as an efficient quantum chemical method of general purpose. © 2006 American Institute of Physics. DOI: 10.1063/1.2148954

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Journal ArticleDOI

The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals

TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Journal ArticleDOI

Effect of the damping function in dispersion corrected density functional theory

TL;DR: It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT‐D methods has only a minor impact on the quality of the results and BJ‐damping seems to provide a physically correct short‐range behavior of correlation/dispersion even with unmodified standard functionals.
Journal ArticleDOI

NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations

TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Density-functional exchange-energy approximation with correct asymptotic behavior.

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Related Papers (5)