scispace - formally typeset
Open AccessProceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, +3 more
- pp 6848-6856
Reads0
Chats0
TLDR
ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Abstract
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13A— actual speedup over AlexNet while maintaining comparable accuracy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images.

TL;DR: This survey focuses on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images, and chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era.
Proceedings ArticleDOI

Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators on Embedded FPGAs

TL;DR: In this article, the authors adopt an algorithm-hardware co-design approach to develop a ConvNet accelerator called Synetgy and a novel ConvNet model called DiracDeltaNet.
Journal ArticleDOI

An Efficient Specific Emitter Identification Method Based on Complex-Valued Neural Networks and Network Compression

TL;DR: Simulation results demonstrated that the proposed CVNN-based SEI method is superior to the existing DL-based methods in both identification performance and convergence speed, and the identification accuracy of CVNN can reach up to nearly 100% at high signal-to-noise ratios (SNRs).
Journal ArticleDOI

Deep learning for monocular depth estimation: A review

TL;DR: Recently, a large body of deep learning methods have been proposed and has shown great promise in handling the traditional ill-posed problem of depth estimation as discussed by the authors, which is of great significance for many applications such as augmented reality, target tracking and autonomous driving.
Journal ArticleDOI

Survey on Deep Neural Networks in Speech and Vision Systems.

TL;DR: In this paper, a review of state-of-the-art deep neural network architectures, algorithms, and systems in vision and speech applications is presented, along with a summary of key challenges and recent successes in running deep neural networks on hardware-restricted platforms.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)
Trending Questions (1)
Can convolutional neural networks run on mobile phones?\?

Yes, convolutional neural networks can run on mobile phones. The paper specifically mentions that ShuffleNet is designed for mobile devices with limited computing power.