scispace - formally typeset
Open AccessProceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, +3 more
- pp 6848-6856
Reads0
Chats0
TLDR
ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Abstract
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13A— actual speedup over AlexNet while maintaining comparable accuracy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-Salient Object Detection

TL;DR: This paper presents an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images, and develops a group consistency preserving decoder tailored for the CoSOD task.
Journal ArticleDOI

Thinning of convolutional neural network with mixed pruning

TL;DR: A method of combining weight pruning and filter pruning, which can achieve higher compression ratio of the model parameters and fine-tuning to recover the model's accuracy.
Posted Content

Attention Based Pruning for Shift Networks

TL;DR: Shift Attention Layers are introduced, which extend SLs by using an attention mechanism that learns which shifts are the best at the same time the network function is trained, and are able to outperform vanilla SLs on various object recognition benchmarks while significantly reducing the number of float operations and parameters for the inference.
Posted Content

Learning Architectures for Binary Networks

TL;DR: This work proposes to search architectures for binary networks (BNAS) by defining a new search space for binary architectures and a novel search objective, and designs a new cell template and proposes to use the Zeroise layer instead of using it as a placeholder.
Posted Content

Rocket Launching: A Universal and Efficient Framework for Training Well-performing Light Net

TL;DR: In this article, the authors proposed an approach that exploits a cumbersome net to help train the lightweight net for prediction, dubbed the whole process rocket launching, where the cumbersome booster net is used to guide the learning of the target light net throughout the whole training process.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)
Trending Questions (1)
Can convolutional neural networks run on mobile phones?\?

Yes, convolutional neural networks can run on mobile phones. The paper specifically mentions that ShuffleNet is designed for mobile devices with limited computing power.