scispace - formally typeset
Open AccessProceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, +3 more
- pp 6848-6856
Reads0
Chats0
TLDR
ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Abstract
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13A— actual speedup over AlexNet while maintaining comparable accuracy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications

TL;DR: The CNN-DSA accelerator is reconfigurable to support CNN model coefficients of various layer sizes and layer types, including convolution, depth-wise convolutions, short-cut connections, max pooling, and ReLU as discussed by the authors.
Posted Content

Hierarchical Self-supervised Augmented Knowledge Distillation

TL;DR: This work proposes to append several auxiliary classifiers to hierarchical intermediate feature maps to generate diverse self-supervised knowledge and perform the one-to-one transfer to teach the student network thoroughly.
Proceedings Article

IamNN: Iterative and Adaptive Mobile Neural Network for Efficient Image Classification

TL;DR: This work uses the core idea of ResNets to design a network based on a ResNet but with parameter sharing and with adaptive computation time, which is much smaller than the original network and can adapt the computational cost to the complexity of the input image.
Proceedings ArticleDOI

PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks

TL;DR: The Precision, Interconnect, and Reuseoptimised DSP (PIR-DSP) offers a 6× improvement in multiplyaccumulate operations per DSP in the 9 × 9-bit case and decreases the run time energy to 31/19/13% of the original value in a 9/4/2-bit MobileNet-v2 DNN implementation.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)
Trending Questions (1)
Can convolutional neural networks run on mobile phones?\?

Yes, convolutional neural networks can run on mobile phones. The paper specifically mentions that ShuffleNet is designed for mobile devices with limited computing power.