scispace - formally typeset
Journal ArticleDOI

Signal-dependent noise determines motor planning

Chris Harris, +1 more
- 20 Aug 1998 - 
- Vol. 394, Iss: 6695, pp 780-784
TLDR
This theory provides a simple and powerful unifying perspective for both eye and arm movement control and accurately predicts the trajectories of both saccades and arm movements and the speed–accuracy trade-off described by Fitt's law.
Abstract
When we make saccadic eye movements or goal-directed arm movements, there is an infinite number of possible trajectories that the eye or arm could take to reach the target1,2. However, humans show highly stereotyped trajectories in which velocity profiles of both the eye and hand are smooth and symmetric for brief movements3,4. Here we present a unifying theory of eye and arm movements based on the single physiological assumption that the neural control signals are corrupted by noise whose variance increases with the size of the control signal. We propose that in the presence of such signal-dependent noise, the shape of a trajectory is selected to minimize the variance of the final eye or arm position. This minimum-variance theory accurately predicts the trajectories of both saccades and arm movements and the speed–accuracy trade-off described by Fitt's law5. These profiles are robust to changes in the dynamics of the eye or arm, as found empirically6,7. Moreover, the relation between path curvature and hand velocity during drawing movements reproduces the empirical ‘two-thirds power law’8,9. This theory provides a simple and powerful unifying perspective for both eye and arm movement control.

read more

Citations
More filters
Proceedings ArticleDOI

Imitation of human demonstration using a biologically inspired modular optimal control scheme

TL;DR: A computational motor system, based on the minimum variance model of human movement, that uses optimality principles to produce human-like movement in a robot arm and the use of a model for human- like movement allows the system to learn from human demonstration.
Journal ArticleDOI

Skill learning involves optimizing the linking of action phases

TL;DR: Simulations revealed that participants learned to near-optimally compensate for temporal uncertainty, presumably related to estimation of time intervals and execution of motor commands, so as to reduce the average latency between the end of the required hold phase duration and the start of the transport phase, while avoiding an excess of premature exits.
Journal ArticleDOI

How the lack of visuomotor feedback affects even the early stages of goal-directed pointing movements.

TL;DR: The data suggest that non-visual modalities, e.g., proprioception, may be too slow to make up for the absence of vision, and argue against the traditional notion that visuomotor feedback is unavailable until the later stages of movement.
Journal ArticleDOI

Stochastic Assume-Guarantee Contracts for Cyber-Physical System Design

TL;DR: In this paper, an assume-guarantee contract framework for cyber-physical system design under probabilistic requirements is presented, where a stochastic linear system and a set of requirements captured by bounded Stochastic Signal Temporal Logic contracts are considered.
References
More filters
Journal ArticleDOI

The information capacity of the human motor system in controlling the amplitude of movement.

TL;DR: The motor system in the present case is defined as including the visual and proprioceptive feedback loops that permit S to monitor his own activity, and the information capacity of the motor system is specified by its ability to produce consistently one class of movement from among several alternative movement classes.
Journal ArticleDOI

The coordination of arm movements: an experimentally confirmed mathematical model.

TL;DR: A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements, and is successful only when formulated in terms of the motion of the hand in extracorporal space.
Journal ArticleDOI

An Internal Model for Sensorimotor Integration

TL;DR: A sensorimotor integration task was investigated in which participants estimated the location of one of their hands at the end of movements made in the dark and under externally imposed forces, providing direct support for the existence of an internal model.
Journal ArticleDOI

Adaptive representation of dynamics during learning of a motor task

TL;DR: The investigation of how the CNS learns to control movements in different dynamical conditions, and how this learned behavior is represented, suggests that the elements of the adaptive process represent dynamics of a motor task in terms of the intrinsic coordinate system of the sensors and actuators.
Related Papers (5)