scispace - formally typeset
Journal ArticleDOI

Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior

Kwang In Kim, +1 more
- 01 Jun 2010 - 
- Vol. 32, Iss: 6, pp 1127-1133
TLDR
Compared with existing algorithms, KRR leads to a better generalization than simply storing the examples as has been done in existing example-based algorithms and results in much less noisy images.
Abstract
This paper proposes a framework for single-image super-resolution. The underlying idea is to learn a map from input low-resolution images to target high-resolution images based on example pairs of input and output images. Kernel ridge regression (KRR) is adopted for this purpose. To reduce the time complexity of training and testing for KRR, a sparse solution is found by combining the ideas of kernel matching pursuit and gradient descent. As a regularized solution, KRR leads to a better generalization than simply storing the examples as has been done in existing example-based algorithms and results in much less noisy images. However, this may introduce blurring and ringing artifacts around major edges as sharp changes are penalized severely. A prior model of a generic image class which takes into account the discontinuity property of images is adopted to resolve this problem. Comparison with existing algorithms shows the effectiveness of the proposed method.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Book ChapterDOI

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Journal ArticleDOI

Image Super-Resolution Using Deep Convolutional Networks

TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Posted Content

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: This work considers image transformation problems, and proposes the use of perceptual loss functions for training feed-forward networks for image transformation tasks, and shows results on image style transfer, where aFeed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Posted Content

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

TL;DR: SRGAN, a generative adversarial network (GAN) for image super-resolution (SR), is presented, to its knowledge, the first framework capable of inferring photo-realistic natural images for 4x upscaling factors and a perceptual loss function which consists of an adversarial loss and a content loss.
References
More filters
Book

Neural Networks: A Comprehensive Foundation

Simon Haykin
TL;DR: Thorough, well-organized, and completely up to date, this book examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Journal ArticleDOI

The Elements of Statistical Learning

Eric R. Ziegel
- 01 Aug 2003 - 
TL;DR: Chapter 11 includes more case studies in other areas, ranging from manufacturing to marketing research, and a detailed comparison with other diagnostic tools, such as logistic regression and tree-based methods.
Related Papers (5)