scispace - formally typeset
Open AccessJournal ArticleDOI

Example-based super-resolution

Reads0
Chats0
TLDR
This work built on another training-based super- resolution algorithm and developed a faster and simpler algorithm for one-pass super-resolution that requires only a nearest-neighbor search in the training set for a vector derived from each patch of local image data.
Abstract
We call methods for achieving high-resolution enlargements of pixel-based images super-resolution algorithms. Many applications in graphics or image processing could benefit from such resolution independence, including image-based rendering (IBR), texture mapping, enlarging consumer photographs, and converting NTSC video content to high-definition television. We built on another training-based super-resolution algorithm and developed a faster and simpler algorithm for one-pass super-resolution. Our algorithm requires only a nearest-neighbor search in the training set for a vector derived from each patch of local image data. This one-pass super-resolution algorithm is a step toward achieving resolution independence in image-based representations. We don't expect perfect resolution independence-even the polygon representation doesn't have that-but increasing the resolution independence of pixel-based representations is an important task for IBR.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Posted Content

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

TL;DR: This work introduces a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrates that they are a strong candidate for unsupervised learning.
Book ChapterDOI

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Journal ArticleDOI

Image Super-Resolution Using Deep Convolutional Networks

TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Posted Content

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: This work considers image transformation problems, and proposes the use of perceptual loss functions for training feed-forward networks for image transformation tasks, and shows results on image style transfer, where aFeed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
References
More filters
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Journal ArticleDOI

Cubic convolution interpolation for digital image processing

TL;DR: It can be shown that the order of accuracy of the cubic convolution method is between that of linear interpolation and that of cubic splines.
Proceedings ArticleDOI

Image quilting for texture synthesis and transfer

TL;DR: This work uses quilting as a fast and very simple texture synthesis algorithm which produces surprisingly good results for a wide range of textures and extends the algorithm to perform texture transfer — rendering an object with a texture taken from a different object.
Journal ArticleDOI

Constructing free-energy approximations and generalized belief propagation algorithms

TL;DR: This work explains how to obtain region-based free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms, and describes empirical results showing that GBP can significantly outperform BP.
Related Papers (5)