scispace - formally typeset
Journal ArticleDOI

Single-Mode Photonic Band Gap Guidance of Light in Air.

Reads0
Chats0
TLDR
The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Abstract
The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated Only certain wavelength bands are confined and guided down the fiber, each band corresponding to the presence of a full two-dimensional band gap in the photonic crystal cladding Single-mode vacuum waveguides have a multitude of potential applications from ultrahigh-power transmission to the guiding of cold atoms

read more

Citations
More filters
Journal ArticleDOI

A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

TL;DR: A simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length.
Journal ArticleDOI

Adaptive Finite Element Method for Simulation of Optical Nano Structures

TL;DR: The finite element method is applied to the optimization of the design of a hollow core photonic crystal fiber and the convergence of the method is looked at to discuss automatic and adaptive grid refinement and the performance of higher order elements.
Journal ArticleDOI

Hollow-core photonic bandgap fibre: new light guidance for new science and technology.

TL;DR: The HC-PCF fabrication, the different results achieved in the fields of laser-induced particle guidance, low-threshold stimulated Raman scattering in hydrogen (vibrational and rotational), laser frequency metrology and quantum optics are reviewed.
Journal ArticleDOI

Hollow core photonic crystal fibers for beam delivery

TL;DR: It is concluded that 7-unit-cell cores are currently most suitable for transmission of femtosecond and sub-picosecond pulses, whereas larger cores are better for delivering nanosecond pulsed and continuous-wave beams.
Journal ArticleDOI

Progress in microstructured optical fibers

TL;DR: The development of microstructured optical fibers has led to the realization of many optical properties in fiber form that were not previously attainable as discussed by the authors, and some of the key applications of micro-structured fibers, including nonlinear fiber-based devices and fibers for high power light delivery, are reviewed.
References
More filters
Journal ArticleDOI

All-silica single-mode optical fiber with photonic crystal cladding

TL;DR: The fabrication of a new type of optical waveguide: the photonic crystal fiber that supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm.
Journal ArticleDOI

Endlessly single-mode photonic crystal fiber.

TL;DR: An effective-index model confirms that an all-silica optical fiber made by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes can be single mode for any wavelength.
Journal ArticleDOI

Hollow metallic and dielectric waveguides for long distance optical transmission and lasers

TL;DR: In this paper, the field configurations and propagation constants of a hollow circular waveguide made of dielectric material or metal for application as an optical waveguide were determined and the increase of attenuation due to curvature of the axis was also determined.
Journal ArticleDOI

Photonic Band Gap Guidance in Optical Fibers

TL;DR: A fundamentally different type of optical waveguide structure is demonstrated, in which light is confined to the vicinity of a low-index region by a two-dimensional photonic band gap crystal.
Journal ArticleDOI

Full 2-D photonic bandgaps in silica/air structures

TL;DR: In this paper, full 2D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air, and a new type of optical fiber based on these structures is proposed.
Related Papers (5)