scispace - formally typeset
Journal ArticleDOI

Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber

Fetah Benabid, +3 more
- 11 Oct 2002 - 
- Vol. 298, Iss: 5592, pp 399-402
TLDR
In this paper, the authors reported on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure, which was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap.
Abstract
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 ± 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 ± 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 ± 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.

read more

Citations
More filters
Journal ArticleDOI

Photonic crystal fibers

TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Journal ArticleDOI

Supercontinuum generation in photonic crystal fiber

TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Journal ArticleDOI

Bound states in the continuum

TL;DR: Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away.
Journal ArticleDOI

Photonic-Crystal Fibers

TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Journal ArticleDOI

Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers

TL;DR: The results demonstrate a unique capability to deliver high-power pulses in a single spatial mode over distances exceeding 200 meters, and represent an increase in the power that can be propagated in an optical fiber of two orders of magnitude.
References
More filters
Book

The Principles of Nonlinear Optics

Y. R. Shen
TL;DR: In this article, the authors present a general description of wave propagation in nonlinear media, including high-resolution nonlinear optical spectroscopy, and four-wave mixing and mixing.
Journal ArticleDOI

All-silica single-mode optical fiber with photonic crystal cladding

TL;DR: The fabrication of a new type of optical waveguide: the photonic crystal fiber that supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm.
Journal ArticleDOI

Single-Mode Photonic Band Gap Guidance of Light in Air.

TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Journal ArticleDOI

Phase-Matched Generation of Coherent Soft X-rays

TL;DR: Phase-matched harmonic conversion of visible laser light into soft x-rays was demonstrated and the recently developed technique of guided-wave frequency conversion was used to upshift light from 800 nanometers to the range from 17 to 32 nanometers.
Journal ArticleDOI

Full 2-D photonic bandgaps in silica/air structures

TL;DR: In this paper, full 2D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air, and a new type of optical fiber based on these structures is proposed.
Related Papers (5)