scispace - formally typeset
Journal ArticleDOI

Size and form in efficient transportation networks

TLDR
The theory accounts in a general way for the quarter-power allometric scaling of living organisms and predicts scaling relations applicable to all efficient transportation networks, which is verified from observational data on the river drainage basins.
Abstract
Many biological processes, from cellular metabolism to population dynamics, are characterized by allometric scaling (power-law) relationships between size and rate1,2,3,4,5,6,7,8,9,10 An outstanding question is whether typical allometric scaling relationships—the power-law dependence of a biological rate on body mass—can be understood by considering the general features of branching networks serving a particular volume Distributed networks in nature stem from the need for effective connectivity11, and occur both in biological systems such as cardiovascular and respiratory networks1,2,3,4,5,6,7,8 and plant vascular and root systems1,9,10, and in inanimate systems such as the drainage network of river basins12 Here we derive a general relationship between size and flow rates in arbitrary networks with local connectivity Our theory accounts in a general way for the quarter-power allometric scaling of living organisms1,2,3,4,5,6,7,8,9,10, recently derived8 under specific assumptions for particular network geometries It also predicts scaling relations applicable to all efficient transportation networks, which we verify from observational data on the river drainage basins Allometric scaling is therefore shown to originate from the general features of networks irrespective of dynamical or geometric assumptions

read more

Citations
More filters
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Journal ArticleDOI

Error and attack tolerance of complex networks

TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Journal ArticleDOI

Toward a metabolic theory of ecology

TL;DR: This work has developed a quantitative theory for how metabolic rate varies with body size and temperature, and predicts how metabolic theory predicts how this rate controls ecological processes at all levels of organization from individuals to the biosphere.
References
More filters
Journal ArticleDOI

Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection

TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Book

The Ecological Implications of Body Size

TL;DR: In this paper, a philosophical introduction is given to logarithms, power curves, and correlations, and a mathematical primer: logarsithm, power curve and correlations.
Journal ArticleDOI

A general model for the origin of allometric scaling laws in biology

TL;DR: The model provides a complete analysis of scaling relations for mammalian circulatory systems that are in agreement with data and predicts structural and functional properties of vertebrate cardiovascular and respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution networks.
Book

Consilience: The Unity of Knowledge

TL;DR: One of the world's greatest living scientists argues for the fundamental unity of all knowledge and the need to search for consilience, the composition of the principles governing every branch of learning.
Book

Scaling, why is animal size so important?

TL;DR: The importance of animal size in animal function is discussed in this paper, where it is shown that physical laws are equally important, for they determine rates of diffusion and heat transfer, transfer of force and momentum, strength of structures, the dynamics of locomotion, and other aspects of the functioning of animal bodies.
Related Papers (5)