scispace - formally typeset
Open AccessJournal ArticleDOI

Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet

TLDR
This work uses the density matrix renormalization group to perform accurate calculations of the ground state of the nearest-neighbor quantum spin S = 1/2 Heisenberg antiferromagnet on the kagome lattice and provides strong evidence that, for the infinite two-dimensional system, the groundState of this model is a fully gapped spin liquid.
Abstract
We use the density matrix renormalization group to perform accurate calculations of the ground state of the nearest-neighbor quantum spin S = 1/2 Heisenberg antiferromagnet on the kagome lattice. We study this model on numerous long cylinders with circumferences up to 12 lattice spacings. Through a combination of very-low-energy and small finite-size effects, our results provide strong evidence that, for the infinite two-dimensional system, the ground state of this model is a fully gapped spin liquid.

read more

Citations
More filters
Journal ArticleDOI

A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States

TL;DR: This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject, that should be a good place for newcomers to get familiarized with some of the key ideas in the field.
Journal ArticleDOI

Quantum Spin Liquids

TL;DR: A review of quantum spin liquids can be found in this paper, where the authors discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons that are conveniently used in the study of spin liquids.
Journal ArticleDOI

Quantum spin liquids: a review.

TL;DR: This review discusses the nature of such phases and their properties based on paradigmatic models and general arguments, and introduces theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids.
Journal ArticleDOI

Quantum spin liquid states

TL;DR: In this paper, a review of the physics of spin liquid states is presented, including spin-singlet states, which may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of SU(2), U(1), or Z2.
Journal ArticleDOI

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

TL;DR: At low temperatures, neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2 (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids, find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in orderedAntiferromagnets.
References
More filters
Journal ArticleDOI

Density matrix formulation for quantum renormalization groups

TL;DR: A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo problem is presented and it is shown that this formulation is optimal in a certain sense.
Journal ArticleDOI

Two soluble models of an antiferromagnetic chain

TL;DR: In this article, two genuinely quantum models for an antiferromagnetic linear chain with nearest neighbor interactions are constructed and solved exactly, in the sense that the ground state, all the elementary excitations and the free energy are found.
Journal ArticleDOI

Spin liquids in frustrated magnets

TL;DR: This exotic behaviour of frustrated magnets is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.
Journal ArticleDOI

Density-matrix algorithms for quantum renormalization groups.

TL;DR: A formulation of numerical real-space renormalization groups for quantum many-body problems is presented and several algorithms utilizing this formulation are outlined, which can be applied to almost any one-dimensional quantum lattice system, and can provide a wide variety of static properties.
Journal ArticleDOI

Resonating valence bonds: A new kind of insulator?

TL;DR: In this article, the possibility of a new kind of electronic state corresponding roughly to Pauling's idea of resonance valence bonds in metals was pointed out, and an estimate of its energy was made in one case.
Related Papers (5)