scispace - formally typeset
Open AccessJournal ArticleDOI

Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin.

Reads0
Chats0
TLDR
The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.
Abstract
Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ- and e-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Thermodynamic limits to microbial life at high salt concentrations.

TL;DR: New data is reviewed, both from field observations and from the characterization of cultures of new types of prokaryotes growing at high salt concentrations, to evaluate to what extent the theories formulated 12 years ago are still valid, need to be refined, or should be refuted.
Journal ArticleDOI

Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

TL;DR: A general overview of these unusual biotopes in the Red Sea is presented and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology.
Journal ArticleDOI

Microbial diversity of hypersaline environments: a metagenomic approach.

TL;DR: The current accepted model of community structure in hypersaline environments is that the square archaeon Haloquadratum waslbyi, the bacteroidete Salinibacter ruber and nanohaloarchaea are predominant members at higher salt concentrations, while more diverse archaeal and bacterial taxa are observed in habitats with intermediate salinities.
References
More filters
Journal ArticleDOI

Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis

TL;DR: Pore water profiles of total CO 2, pH, PO 3−4, NO − 3 plus NO − 2, SO 2− 4, S 2−, Fe 2+ and Mn 2+ have been obtained in cores from pelagic sediments of the eastern equatorial Atlantic under waters of moderate to high productivity as mentioned in this paper.
Journal ArticleDOI

The ecology and biotechnology of sulphate-reducing bacteria

TL;DR: Sulphate-reducing bacteria are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds, and are ubiquitous in anoxic habitats.
Journal ArticleDOI

Archaeal dominance in the mesopelagic zone of the Pacific Ocean

TL;DR: A year-long study of the abundance of two specific archaeal groups (pelagic euryarchaeota and pelagic crenarchAEota) in one of the ocean's largest habitats suggests that most pelagic deep-sea microorganisms are metabolically active and the results suggest that the global oceans harbour approximately 1.3 × 1028Archaeal cells, and 3.1‬×‬10 28 bacterial cells.
Journal ArticleDOI

Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

TL;DR: Evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea is provided and anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment.
Related Papers (5)