scispace - formally typeset
Search or ask a question
Journal ArticleDOI

SVD-Based Quality Metric for Image and Video Using Machine Learning

01 Apr 2012-Vol. 42, Iss: 2, pp 347-364
TL;DR: The two-stage process and the relevant work in the existing visual quality metrics are first introduced followed by an in-depth analysis of SVD for visual quality assessment, which shows the proposed method outperforms the eight existing relevant schemes.
Abstract: We study the use of machine learning for visual quality evaluation with comprehensive singular value decomposition (SVD)-based visual features. In this paper, the two-stage process and the relevant work in the existing visual quality metrics are first introduced followed by an in-depth analysis of SVD for visual quality assessment. Singular values and vectors form the selected features for visual quality assessment. Machine learning is then used for the feature pooling process and demonstrated to be effective. This is to address the limitations of the existing pooling techniques, like simple summation, averaging, Minkowski summation, etc., which tend to be ad hoc. We advocate machine learning for feature pooling because it is more systematic and data driven. The experiments show that the proposed method outperforms the eight existing relevant schemes. Extensive analysis and cross validation are performed with ten publicly available databases (eight for images with a total of 4042 test images and two for video with a total of 228 videos). We use all publicly accessible software and databases in this study, as well as making our own software public, to facilitate comparison in future research.
Citations
More filters
Journal ArticleDOI
TL;DR: Despite its simplicity, it is able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms.
Abstract: We propose a natural scene statistic-based distortion-generic blind/no-reference (NR) image quality assessment (IQA) model that operates in the spatial domain. The new model, dubbed blind/referenceless image spatial quality evaluator (BRISQUE) does not compute distortion-specific features, such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized luminance coefficients to quantify possible losses of “naturalness” in the image due to the presence of distortions, thereby leading to a holistic measure of quality. The underlying features used derive from the empirical distribution of locally normalized luminances and products of locally normalized luminances under a spatial natural scene statistic model. No transformation to another coordinate frame (DCT, wavelet, etc.) is required, distinguishing it from prior NR IQA approaches. Despite its simplicity, we are able to show that BRISQUE is statistically better than the full-reference peak signal-to-noise ratio and the structural similarity index, and is highly competitive with respect to all present-day distortion-generic NR IQA algorithms. BRISQUE has very low computational complexity, making it well suited for real time applications. BRISQUE features may be used for distortion-identification as well. To illustrate a new practical application of BRISQUE, we describe how a nonblind image denoising algorithm can be augmented with BRISQUE in order to perform blind image denoising. Results show that BRISQUE augmentation leads to performance improvements over state-of-the-art methods. A software release of BRISQUE is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip for public use and evaluation.

3,780 citations

Journal ArticleDOI
TL;DR: It is found that SSEQ matches well with human subjective opinions of image quality, and is statistically superior to the full-reference IQA algorithm SSIM and several top-performing NR IQA methods: BIQI, DIIVINE, and BLIINDS-II.
Abstract: We develop an efficient general-purpose no-reference (NR) image quality assessment (IQA) model that utilizes local spatial and spectral entropy features on distorted images. Using a 2-stage framework of distortion classification followed by quality assessment, we utilize a support vector machine (SVM) to train an image distortion and quality prediction engine. The resulting algorithm, dubbed Spatial–Spectral Entropy-based Quality (SSEQ) index, is capable of assessing the quality of a distorted image across multiple distortion categories. We explain the entropy features used and their relevance to perception and thoroughly evaluate the algorithm on the LIVE IQA database. We find that SSEQ matches well with human subjective opinions of image quality, and is statistically superior to the full-reference (FR) IQA algorithm SSIM and several top-performing NR IQA methods: BIQI, DIIVINE, and BLIINDS-II. SSEQ has a considerably low complexity. We also tested SSEQ on the TID2008 database to ascertain whether it has performance that is database independent.

562 citations

Journal ArticleDOI
TL;DR: An up-to-date review of research in IQA is provided, and several open challenges in this field are highlighted, including key properties of visual perception, image quality databases, existing full-reference, no- reference, and reduced-reference IQA algorithms.
Abstract: Image quality assessment (IQA) has been a topic of intense research over the last several decades. With each year comes an increasing number of new IQA algorithms, extensions of existing IQA algorithms, and applications of IQA to other disciplines. In this article, I first provide an up-to-date review of research in IQA, and then I highlight several open challenges in this field. The first half of this article provides discuss key properties of visual perception, image quality databases, existing full-reference, no-reference, and reduced-reference IQA algorithms. Yet, despite the remarkable progress that has been made in IQA, many fundamental challenges remain largely unsolved. The second half of this article highlights some of these challenges. I specifically discuss challenges related to lack of complete perceptual models for: natural images, compound and suprathreshold distortions, and multiple distortions, and the interactive effects of these distortions on the images. I also discuss challenges related to IQA of images containing nontraditional, and I discuss challenges related to the computational efficiency. The goal of this article is not only to help practitioners and researchers keep abreast of the recent advances in IQA, but to also raise awareness of the key limitations of current IQA knowledge.

412 citations


Cites methods from "SVD-Based Quality Metric for Image ..."

  • ...In [198], Narwaria and Lin presented an IQA algorithm which uses SVD-based visual features and feature pooling via machine learning....

    [...]

Journal ArticleDOI
TL;DR: A novel reduced-reference image quality metric for contrast change (RIQMC) is presented using phase congruency and statistics information of the image histogram and results justify the superiority and efficiency of RIQMC over a majority of classical and state-of-the-art IQA methods.
Abstract: Proper contrast change can improve the perceptual quality of most images, but it has largely been overlooked in the current research of image quality assessment (IQA). To fill this void, we in this paper first report a new large dedicated contrast-changed image database (CCID2014), which includes 655 images and associated subjective ratings recorded from 22 inexperienced observers. We then present a novel reduced-reference image quality metric for contrast change (RIQMC) using phase congruency and statistics information of the image histogram. Validation of the proposed model is conducted on contrast related CCID2014, TID2008, CSIQ and TID2013 databases, and results justify the superiority and efficiency of RIQMC over a majority of classical and state-of-the-art IQA methods. Furthermore, we combine aforesaid subjective and objective assessments to derive the RIQMC based Optimal HIstogram Mapping (ROHIM) for automatic contrast enhancement, which is shown to outperform recently developed enhancement technologies.

335 citations


Cites background from "SVD-Based Quality Metric for Image ..."

  • ...As a matter of fact, several efforts have succeeded in estimating perceptual weights for pooling based on singular value decomposition [48], information content [8], and textual connected component [49], and the models have indeed induced noticeable IQA performance gain....

    [...]

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the proposed blind image blur evaluation algorithm can produce blur scores highly consistent with subjective evaluations and outperforms the state-of-the-art image blur metrics and several general-purpose no-reference quality metrics.
Abstract: Blur is a key determinant in the perception of image quality. Generally, blur causes spread of edges, which leads to shape changes in images. Discrete orthogonal moments have been widely studied as effective shape descriptors. Intuitively, blur can be represented using discrete moments since noticeable blur affects the magnitudes of moments of an image. With this consideration, this paper presents a blind image blur evaluation algorithm based on discrete Tchebichef moments. The gradient of a blurred image is first computed to account for the shape, which is more effective for blur representation. Then the gradient image is divided into equal-size blocks and the Tchebichef moments are calculated to characterize image shape. The energy of a block is computed as the sum of squared non-DC moment values. Finally, the proposed image blur score is defined as the variance-normalized moment energy, which is computed with the guidance of a visual saliency model to adapt to the characteristic of human visual system. The performance of the proposed method is evaluated on four public image quality databases. The experimental results demonstrate that our method can produce blur scores highly consistent with subjective evaluations. It also outperforms the state-of-the-art image blur metrics and several general-purpose no-reference quality metrics.

239 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

40,609 citations

Journal ArticleDOI
TL;DR: Although the new index is mathematically defined and no human visual system model is explicitly employed, experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error.
Abstract: We propose a new universal objective image quality index, which is easy to calculate and applicable to various image processing applications. Instead of using traditional error summation methods, the proposed index is designed by modeling any image distortion as a combination of three factors: loss of correlation, luminance distortion, and contrast distortion. Although the new index is mathematically defined and no human visual system model is explicitly employed, our experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error. Demonstrative images and an efficient MATLAB implementation of the algorithm are available online at http://anchovy.ece.utexas.edu//spl sim/zwang/research/quality_index/demo.html.

5,285 citations


"SVD-Based Quality Metric for Image ..." refers background in this paper

  • ...We have also compared the performance of the proposed Q (with k-fold CV) with the following existing visual quality estimators: PSNR, SSIM [11], MSVD [23], VSNR [33], IFC [22], VIF [34], and the method proposed in [73]....

    [...]

  • ...Similarly, for the A57 database, the performance of PSNR, VIF, SSIM, MSVD, and IFC is relatively poor....

    [...]

  • ...The authors in [77] and [78] have explored the combination of multiscale SSIM, visual information fidelity (VIF) [34], and reflection SVD (R-SVD) [72] algorithms to assess image quality....

    [...]

  • ...A well-known metric is the SSIM [10], [11], which is based on the idea of equating the perceived image distortion to the measurement of structural distortion....

    [...]

  • ...In SSIM, the mean of quality scores of individual image blocks gives the overall image quality score....

    [...]

Book
20 Mar 1996
TL;DR: Montgomery and Runger's Engineering Statistics text as discussed by the authors provides a practical approach oriented to engineering as well as chemical and physical sciences by providing unique problem sets that reflect realistic situations, students learn how the material will be relevant in their careers.
Abstract: Montgomery and Runger's bestselling engineering statistics text provides a practical approach oriented to engineering as well as chemical and physical sciences. By providing unique problem sets that reflect realistic situations, students learn how the material will be relevant in their careers. With a focus on how statistical tools are integrated into the engineering problem-solving process, all major aspects of engineering statistics are covered. Developed with sponsorship from the National Science Foundation, this text incorporates many insights from the authors' teaching experience along with feedback from numerous adopters of previous editions.

3,915 citations

Journal ArticleDOI
TL;DR: An image information measure is proposed that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image and combined these two quantities form a visual information fidelity measure for image QA.
Abstract: Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.

3,146 citations


"SVD-Based Quality Metric for Image ..." refers background or methods in this paper

  • ...We have also compared the performance of the proposed Q (with k-fold CV) with the following existing visual quality estimators: PSNR, SSIM [11], MSVD [23], VSNR [33], IFC [22], VIF [34], and the method proposed in [73]....

    [...]

  • ...The proposed method is, however, less complex than more sophisticated metrics like VIF and IFC, which employ wavelet decomposition....

    [...]

  • ...Similarly, for the A57 database, the performance of PSNR, VIF, SSIM, MSVD, and IFC is relatively poor....

    [...]

  • ...The authors in [77] and [78] have explored the combination of multiscale SSIM, visual information fidelity (VIF) [34], and reflection SVD (R-SVD) [72] algorithms to assess image quality....

    [...]

  • ...estimators: PSNR, SSIM [11], MSVD [23], VSNR [33], IFC [22], VIF [34], and the method proposed in [73]....

    [...]

01 Jan 1997
TL;DR: A survey of machine learning methods for handling data sets containing large amounts of irrelevant information can be found in this article, where the authors focus on two key issues: selecting relevant features and selecting relevant examples.
Abstract: In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area. @ 1997 Elsevier Science B.V.

2,947 citations