scispace - formally typeset
Journal ArticleDOI

SwissParam: a fast force field generation tool for small organic molecules.

Reads0
Chats0
TLDR
A fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field is presented.
Abstract
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.

read more

Citations
More filters
Journal ArticleDOI

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.
Journal ArticleDOI

SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

TL;DR: The new SwissADME web tool is presented that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar are presented.
Journal ArticleDOI

ZINC 15 – Ligand Discovery for Everyone

TL;DR: A suite of ligand annotation, purchasability, target, and biology association tools, incorporated into ZINC and meant for investigators who are not computer specialists, offer new analysis tools that are easy for nonspecialists yet with few limitations for experts.
Journal ArticleDOI

SwissDock, a protein-small molecule docking web service based on EADock DSS

TL;DR: SwissDock, a web server dedicated to the docking of small molecules on target proteins, is presented, based on the EADock DSS engine, combined with setup scripts for curating common problems and for preparing both the target protein and the ligand input files.
Journal ArticleDOI

SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules

TL;DR: The 2019 version of SwissTargetPrediction is described, which represents a major update in terms of underlying data, backend and web interface, and high levels of predictive performance were maintained despite more extended biological and chemical spaces to be explored.
References
More filters
Journal ArticleDOI

The GROMOS Biomolecular Simulation Program Package

TL;DR: The newest version of the GROningen MOlecular Simulation program package, GROMOS96, has been developed for the dynamic modelling of (bio)molecules using the methods of molecular dynamics, stochastic dynamics, and energy minimization as well as the path-integral formalism.
Journal Article

The GROMOS biomolecular simulation program package

TL;DR: The GROningen MOlecular Simulation (GROMOS) program package as mentioned in this paper has been developed for the dynamic modeling of (bio)molecules using the methods of molecular dynamics, stochastic dynamics, and energy minimization as well as the path-integral formalism.
Journal ArticleDOI

Insights into Protein-Protein Binding by Binding Free Energy Calculation and Free Energy Decomposition for the Ras-Raf and Ras-RalGDS Complexes

TL;DR: This study investigates the capability of the molecular mechanics-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes and finds hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation.
Journal ArticleDOI

Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4.

TL;DR: It is shown that even for ligands with a large number of degrees of freedom, root-mean-square deviations of less than 1 Å from the crystallographic conformation are obtained for the lowest-energy dockings, although fewer dockings find the crystallography conformation when there are more degrees offreedom.
Journal ArticleDOI

Knowledge-based scoring function to predict protein-ligand interactions

TL;DR: The development and validation of a new knowledge-based scoring function (DrugScore) to describe the binding geometry of ligands in proteins is presented and is superior to the "chemical scoring" implemented into this tool, while comparable results are obtained using the "energy scoring" in DOCK.
Related Papers (5)