scispace - formally typeset
Journal ArticleDOI

Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation

Reads0
Chats0
TLDR
It is proposed that interneuron network oscillations, in conjunction with intrinsic membrane resonances and long-loop (such as thalamocortical) interactions, contribute to 40-Hz rhythms in vivo.
Abstract
Partially synchronous 40-Hz oscillations of cortical neurons have been implicated in cognitive function. Specifically, coherence of these oscillations between different parts of the cortex may provide conjunctive properties to solve the 'binding problem': associating features detected by the cortex into unified perceived objects. Here we report an emergent 40-Hz oscillation in networks of inhibitory neurons connected by synapses using GABAA (gamma-aminobutyric acid) receptors in slices of rat hippocampus and neocortex. These network inhibitory postsynaptic potential oscillations occur in response to the activation of metabotropic glutamate receptors. The oscillations can entrain pyramidal cell discharges. The oscillation frequency is determined both by the net excitation of interneurons and by the kinetics of the inhibitory postsynaptic potentials between them. We propose that interneuron network oscillations, in conjunction with intrinsic membrane resonances and long-loop (such as thalamocortical) interactions, contribute to 40-Hz rhythms in vivo.

read more

Citations
More filters
Journal ArticleDOI

Driving fast-spiking cells induces gamma rhythm and controls sensory responses

TL;DR: The timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses and provided the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.
Journal ArticleDOI

Parvalbumin neurons and gamma rhythms enhance cortical circuit performance

TL;DR: Optogenetics opens the door to a new kind of informational analysis of brain function, permitting quantitative delineation of the functional significance of individual elements in the emergent operation and function of intact neural circuitry.
Journal ArticleDOI

Mechanisms of Gamma Oscillations

TL;DR: The cellular and synaptic mechanisms underlying gamma oscillations are reviewed and empirical questions and controversial conceptual issues are outlined, finding that gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition.
References
More filters
Journal ArticleDOI

Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.

TL;DR: It is demonstrated here that neurons in spatially separate columns can synchronize their oscillatory responses, which has, on average, no phase difference, depends on the spatial separation and the orientation preference of the cells and is influenced by global stimulus properties.
Journal ArticleDOI

Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex

TL;DR: The results demonstrate that local neuronal populations in the visual cortex engage in stimulus-specific synchronous oscillations resulting from an intracortical mechanism, and may provide a general mechanism by which activity patterns in spatially separate regions of the cortex are temporally coordinated.
Journal ArticleDOI

Coherent 40-Hz oscillation characterizes dream state in humans.

TL;DR: It is proposed that the specific loops give the content of cognition, and a nonspecific loop gives the temporal binding required for the unity of cognitive experience.
Journal ArticleDOI

Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex.

TL;DR: Response synchronization has now been shown to occur also between neurons in area 17 of the right and left cerebral hemispheres, and this synchronization is mediated by corticocortical connections, compatible with the hypothesis that temporal synchrony of neuronal discharges serves to bind features within and between the visual hemifields.
Journal ArticleDOI

Synchronous oscillations in neuronal systems: mechanisms and functions.

TL;DR: New techniques have revealed that spatially and temporally organized activity among distributed populations of cells often takes the form of synchronous rhythms, which provide new insights into the behavior and mechanisms controUing the coordination of activity in neuronal populations.
Related Papers (5)