scispace - formally typeset
Open AccessJournal ArticleDOI

The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time

TLDR
In this article, a suite of 30 cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes are presented.
Abstract
We introduce a suite of 30 cosmological magneto-hydrodynamical zoom simulations of the formation of galaxies in isolated Milky Way mass dark haloes. These were carried out with the moving mesh code arepo, together with a comprehensive model for galaxy formation physics, including active galactic nuclei (AGN) feedback and magnetic fields, which produces realistic galaxy populations in large cosmological simulations. We demonstrate that our simulations reproduce a wide range of present-day observables, in particular, two-component disc-dominated galaxies with appropriate stellar masses, sizes, rotation curves, star formation rates and metallicities. We investigate the driving mechanisms that set present-day disc sizes/scalelengths, and find that they are related to the angular momentum of halo material. We show that the largest discs are produced by quiescent mergers that inspiral into the galaxy and deposit high-angular momentum material into the pre-existing disc, simultaneously increasing the spin of dark matter and gas in the halo. More violent mergers and strong AGN feedback play roles in limiting disc size by destroying pre-existing discs and by suppressing gas accretion on to the outer disc, respectively. The most important factor that leads to compact discs, however, is simply a low angular momentum for the halo. In these cases, AGN feedback plays an important role in limiting central star formation and the formation of a massive bulge.

read more

Citations
More filters
Journal ArticleDOI

First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time

TL;DR: In this paper, the authors present a new cosmological, magnetohydrodynamical simulation for galaxy formation, TNG50, which reaches a numerical resolution typical of zoom-in simulations, with a baryonic element mass of 8.5 x 10(4) M-circle dot and an average cell size of 70-140pc in the star-forming regions of galaxies.
References
More filters
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Cosmological simulation code GADGET-2

TL;DR: GADGET-2 as mentioned in this paper is a massively parallel tree-SPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics.
Journal ArticleDOI

A hierarchical O(N log N) force-calculation algorithm

TL;DR: A novel method of directly calculating the force on N bodies that grows only as N log N is described, using a tree-structured hierarchical subdivision of space into cubic cells, each is recursively divided into eight subcells whenever more than one particle is found to occupy the same cell.
Journal ArticleDOI

The evolution of large-scale structure in a universe dominated by cold dark matter

TL;DR: In this article, the results of numerical simulations of nonlinear gravitational clustering in universes dominated by weakly interacting, cold dark matter are presented and the evolution of the fundamental statistical properties of the models is described and their comparability with observation is discussed.
Related Papers (5)