scispace - formally typeset
Journal ArticleDOI

The Dipolar Broadening of Magnetic Resonance Lines in Crystals

J. H. Van Vleck
- 01 Nov 1948 - 
- Vol. 74, Iss: 9, pp 1168-1183
TLDR
In this article, the second moment of the frequency deviation of the absorption line of the electron was calculated and the fourth moment was also computed to examine how good an approximation is the conventional assumption of a Gaussian shape.
Abstract
In regular crystals, the width of the absorption lines arising from the magnetic moment of the electron or nucleus is caused primarily by the interaction between the magnetic dipoles. It is prohibitively difficult to determine the precise shape of the absorption line theoretically, but the invariance of the diagonal sum in quantum mechanics permits the calculation of the second moment of the frequency deviation, and hence the r.m.s. line breadth. The latter agrees excellently with the observations of Pake and Purcell on the magnetic absorption of the F nucleus in Ca${\mathrm{F}}_{2}$, both in absolute magnitude, and in the dependence on the direction between the magnetic field and the principal cubic axes. The fourth moment was also computed to examine how good an approximation is the conventional assumption of a Gaussian shape. As long as no exchange is present (the nuclear case) the Gaussian model is moderately good. For the 100 direction in a cubic crystal, the theoretical ratio of root mean fourth to root mean square breadth is 1.25. Pake and Purcell's measurements yield 1.24. A Gaussian model would require 1.32. The theory is extended to include crystals with two kinds of spin moments (two types of nuclei, or simultaneous nuclear and electronic spin). Coupling between unlike moments is less effective (by a factor ⅔ in the r.m.s. width) than that between like in broadening the lines.In the paramagnetic absorption caused by electronic spin, it is imperative to include the effect of exchange coupling. This interaction does not contribute to the second moment, but greatly increases the fourth. As a result, the lines are peaked much more sharply than one would compute from the second moment with the Gaussian model for line shape. This "exchange narrowing" explains why microwave paramagnetic absorption lines are much narrower than one first conjectures from the amount of dipolar coupling.The theoretical calculations are given in Sections II-IV. The final sections V-VI give the comparison with the experiments of Pake and Purcell, and with the model of Bloembergen, Purcell, and Pound, for r-f absorption in liquids.

read more

Citations
More filters
Journal ArticleDOI

Diluted magnetic semiconductors

TL;DR: In this paper, the physical properties of diluted magnetic semiconductors (DMS) of the type AII1−xMnxBVI (e.g., Cd1−mnxSe, Hg 1−mnsTe) were reviewed.
Journal ArticleDOI

Proton‐enhanced NMR of dilute spins in solids

TL;DR: In this article, the NMR signals of isotopically or chemically dilute nuclear spins S in solids can be enhanced by repeatedly transferring polarization from a more abundant species I of high abundance (usually protons) to which they are coupled.
Journal ArticleDOI

NMR in rotating solids

TL;DR: In this paper, it was shown that rotational spin echoes provide a convenient means of studying very slow random molecular rotations (τc≲1 sec), which must be described by a proper average Hamiltonian theory.
Journal ArticleDOI

Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed

E. R. Andrew, +2 more
- 13 Dec 1958 - 
TL;DR: In this article, it was shown that when these weak side-spectra are included the second moment does indeed remain invariant even though the second moments of the central portion, which is all that is observed experimentally, becomes smaller.