scispace - formally typeset
Open AccessJournal ArticleDOI

The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products

Reads0
Chats0
TLDR
The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re.
Abstract
The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (∼1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI are provided in five companion papers.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Magnetospheric Multiscale Overview and Science Objectives

TL;DR: Magnetospheric multiscale (MMS) as mentioned in this paper is a NASA four-spacecraft constellation mission to investigate magnetic reconnection in the boundary regions of the Earth's magnetosphere.
Journal ArticleDOI

Fast Plasma Investigation for Magnetospheric Multiscale

Craig J. Pollock, +106 more
TL;DR: The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics as mentioned in this paper.
Journal ArticleDOI

Electron-scale measurements of magnetic reconnection in space.

TL;DR: For example, NASA's magnetospheric multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field as discussed by the authors.
References
More filters
Journal ArticleDOI

Interplanetary Magnetic Field and the Auroral Zones

TL;DR: In this article, it was found that a model with a southward interplanetary magnetic field leads to a natural explanation of the SD currents and speculative aspects of the problem as they appear at this time are discussed.
Journal ArticleDOI

Sweet's mechanism for merging magnetic fields in conducting fluids

TL;DR: In this paper, it was shown that two oppositely directed sunspot fields with scales of 104 km could be merged by Sweet's mechanism, if shoved firmly together, in about two weeks; their normal interdiffusion time would be of the order of 600 years.
Book

The sun

Related Papers (5)

Fast Plasma Investigation for Magnetospheric Multiscale

Craig J. Pollock, +106 more