scispace - formally typeset
Open AccessJournal Article

The framework topology of zeolite beta

Reads0
Chats0
TLDR
The tetrahedral framework structure of zeolite beta is disordered along (001) planes as mentioned in this paper, and the disordered structure is related by a/3 and/or b/3 displacements on (1) planes to three ordered polytype structures with triclinic, monoclinic and tetragonal symmetry.
Abstract
The tetrahedral framework structure of zeolite beta is disordered along (001). The disordered structure is related by a/3 and/or b/3 displacements on (001) planes to three ordered polytype structures with triclinic, monoclinic, and tetragonal symmetry. Three mutually perpendicular 12-ring channel systems are characteristic of the three ordered polytypes and the disordered beta structure. The proposed framework structures are consistent with the known diffraction, sorption an cation exchange properties of zeolite beta.

read more

Citations
More filters
Journal ArticleDOI

Physicochemical characterization of boro- and gallo-silicate isomorphs of β -zeolite

TL;DR: The crystalline isomorphs of β-zeolite containing boron or gallium in the framework positions have been synthesized and the products characterized by comparing them with Al-β zeolite.
Journal ArticleDOI

A convenient and clean synthesis of methylenebisamides and carbinolamides over zeolites in aqueous media

TL;DR: In this article, a simple, efficient and environmentally benign protocol for the synthesis of methylenebisamides and carbinolamides in high yields from aromatic amides and formaldehyde in the presence of heterogeneous catalysts (Hβ and NaY zeolites) using water as a solvent is demonstrated.
Journal ArticleDOI

Masked Lewis Sites in Proton-Exchanged Zeolites: A Computational and Microcalorimetric Investigation

TL;DR: In this article, it was shown that the acidity of a formal Al(III) site may become masked when the local topology around the ions allows the latter to expand their coordination by making an extra bond to the aluminosilicate-framework oxygen atoms, but their intrinsic acidity is not irreversibly lost because adsorbed molecules of sufficiently high basicity can unhook the Al atom from the framework.
Journal ArticleDOI

Synchrotron X-ray diffraction studies of inorganic materials and heterogeneous catalysts

TL;DR: In this article, the special features of synchrotron X-radiation and the types of instrumentation required for a range of X-ray diffraction experiments are outlined and a diverse range of applications to inorganic and heterogeneous catalyst systems are discussed.
References
More filters
Journal ArticleDOI

The crystal structure of mordenite (ptilolite)

TL;DR: Mordenite, a zeolite, was derived by superposition of the three-dimensional Patterson function and partially refined assuming the centric symmetry Cmcm or Cmc2t as discussed by the authors.
Journal ArticleDOI

The framework topology of ZSM-12: A high-silica zeolite

TL;DR: In this article, the structure of ZSM-12, a high-silica zeolite, was determined by analysis of electron and X-ray powder diffraction data combined with model building.
Journal ArticleDOI

The framework topology of ZSM-22: A high silica zeolite

TL;DR: ZSM-22 as discussed by the authors, an orthorhombic high silica zeolite (Cmcm, a = 13.86 ± 0.03A, b = 17.41± 0.04A, and c = 5.5 × 4.5 A), has a framework consisting of 5-, 6- and 10-rings.
Journal ArticleDOI

The framework topology of ZSM-48: A high silica zeolite

TL;DR: In this article, a disordered structure consisting of ferrierite sheets linked via bridging oxygens located on mirror planes is proposed for this material, characterized by ten-ring noninterpenetrating linear channels whose ideal dimensions are 5.3 × 5.6 A.
Journal ArticleDOI

The framework topology of ZSM-23: A high silica zeolite

TL;DR: ZSM-23 as discussed by the authors is a high-silica zeolite with lattice parameters of: a = 5.01 ± 0.02A, b = 21.52± 0.04A, and c = 11.13 ± 1.03A.
Related Papers (5)