scispace - formally typeset
Journal ArticleDOI

The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities

01 Feb 1955-Vol. 6, Iss: 2, pp 170-176

AboutThe article was published on 1955-02-01 and is currently open access. It has received 521 citation(s) till now. The article focuses on the topic(s): Convex set & Subderivative.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: The authors prove two results about this type of estimator that are unprecedented in several ways: with high probability f/spl circ/*/sub n/ is at least as smooth as f, in any of a wide variety of smoothness measures.
Abstract: Donoho and Johnstone (1994) proposed a method for reconstructing an unknown function f on [0,1] from noisy data d/sub i/=f(t/sub i/)+/spl sigma/z/sub i/, i=0, ..., n-1,t/sub i/=i/n, where the z/sub i/ are independent and identically distributed standard Gaussian random variables. The reconstruction f/spl circ/*/sub n/ is defined in the wavelet domain by translating all the empirical wavelet coefficients of d toward 0 by an amount /spl sigma//spl middot//spl radic/(2log (n)/n). The authors prove two results about this type of estimator. [Smooth]: with high probability f/spl circ/*/sub n/ is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: the estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. The present proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model. >

8,743 citations


Cites background from "The integral of a symmetric unimoda..."

  • ...Thus we will want ultimately to interpret [1] ( I) as the empirical wavelet coe cients of (f(ti))n 1 i=0 ; [2] (̂I) as the empirical wavelet coe cients of an estimate f̂n [3] (2....

    [...]

Book
06 Apr 2011
TL;DR: In this paper, Doubly Stochastic Matrices and Schur-Convex Functions are used to represent matrix functions in the context of matrix factorizations, compounds, direct products and M-matrices.
Abstract: Introduction.- Doubly Stochastic Matrices.- Schur-Convex Functions.- Equivalent Conditions for Majorization.- Preservation and Generation of Majorization.- Rearrangements and Majorization.- Combinatorial Analysis.- Geometric Inequalities.- Matrix Theory.- Numerical Analysis.- Stochastic Majorizations.- Probabilistic, Statistical, and Other Applications.- Additional Statistical Applications.- Orderings Extending Majorization.- Multivariate Majorization.- Convex Functions and Some Classical Inequalities.- Stochastic Ordering.- Total Positivity.- Matrix Factorizations, Compounds, Direct Products, and M-Matrices.- Extremal Representations of Matrix Functions.

6,374 citations


Cites background from "The integral of a symmetric unimoda..."

  • ...The above-mentioned result of Anderson (1955) easily follows by taking G as the group consisting of the two mappings x' = x and x' = -JC....

    [...]

  • ...The following result due to Anderson (1955) had a profound influence....

    [...]

  • ...If (1) is only required for the increasing (decreasing) convex functions on R then one speaks of weak sub-majorization x <wy (or weak super-majorization x < >>, respectively)....

    [...]

Journal ArticleDOI
TL;DR: For rectangular confidence regions for the mean values of multivariate normal distributions, this paper proved that a confidence region constructed for independent coordinates is, at the same time, a conservative confidence region for any case of dependent coordinates.
Abstract: For rectangular confidence regions for the mean values of multivariate normal distributions the following conjecture of 0. J. Dunn [3], [4] is proved: Such a confidence region constructed for the case of independent coordinates is, at the same time, a conservative confidence region for any case of dependent coordinates. This result is based on an inequality for the probabilities of rectangles in normal distributions, which permits one to factor out the probability for any single coordinate.

2,228 citations


Cites background from "The integral of a symmetric unimoda..."

  • ...Andersoni's Corollary 2 in [1] which asserts the following: If X is a random vector with density g(x) such that g(x) = g( -x) and the set {x; g(x) > u } is convex for every non-negative u, and if E is a convex set, symmetric about the origin, y is a vector and k a number, 0< kI< I, then P{X+kyEEE} ?P{X+y&E}....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the statistics Gi(d) and Gi*(d), introduced in Getis and Ord (1992) for the study of local pattern in spatial data, are extended and their properties further explored.
Abstract: The statistics Gi(d) and Gi*(d), introduced in Getis and Ord (1992) for the study of local pattern in spatial data, are extended and their properties further explored. In particular, nonbinary weights are allowed and the statistics are related to Moran's autocorrelation statistic, I. The correlations between nearby values of the statistics are derived and verified by simulation. A Bonferroni criterion is used to approximate significance levels when testing extreme values from the set of statistics. An example of the use of the statistics is given using spatial-temporal data on the AIDS epidemic centering on San Francisco. Results indicate that in recent years the disease is intensifying in the counties surrounding the city.

2,179 citations

OtherDOI
29 Sep 2014
TL;DR: In this article, the authors present a concise review of developments on various continuous multivariate distributions and present some basic definitions and notations, and present several important continuous multi-dimensional distributions and their significant properties and characteristics.
Abstract: In this article, we present a concise review of developments on various continuous multivariate distributions. We first present some basic definitions and notations. Then, we present several important continuous multivariate distributions and list their significant properties and characteristics. Keywords: generating function; moments; conditional distribution; truncated distribution; regression; bivariate normal; multivariate normal; multivariate exponential; multivariate gamma; dirichlet; inverted dirichlet; liouville; multivariate logistic; multivariate pareto; multivariate extreme value; multivariate t; wishart translated systems; multivariate exponential families

1,087 citations


References
More filters
Book
01 Jan 1953

10,504 citations

Journal ArticleDOI
TL;DR: In this article, a general method for calculating the limiting distributions of these criteria is developed by reducing them to corresponding problems in stochastic processes, which in turn lead to more or less classical eigenvalue and boundary value problems for special classes of differential equations.
Abstract: The statistical problem treated is that of testing the hypothesis that $n$ independent, identically distributed random variables have a specified continuous distribution function $F(x)$. If $F_n(x)$ is the empirical cumulative distribution function and $\psi(t)$ is some nonnegative weight function $(0 \leqq t \leqq 1)$, we consider $n^{\frac{1}{2}} \sup_{-\infty

2,788 citations


"The integral of a symmetric unimoda..." refers background in this paper

  • ...In Theorem 1 the equality in (1) holds for k<l if and only if, for every u, (E+y)r\Ku=Er\Ku-\-y....

    [...]

  • ...It will be noticed that we obtain strict inequality in (1) if and only if for at least one u, H(u)>H*(u) (because H(u) is continuous on the left)....

    [...]

BookDOI
01 Jan 1934
TL;DR: In this article, Minkowski et al. den engen Zusammenhang dieser Begriffbildungen und Satze mit der Frage nach der bestimmung konvexer Flachen durch ihre GAusssche Krtim mung aufgedeckt und tiefliegende diesbeztigliche Satze bewiesen.
Abstract: Konvexe Figuren haben von jeher in der Geometrie eine bedeutende Rolle gespielt. Die durch ihre KonvexiUitseigenschaft allein charakteri sierten Gebilde hat aber erst BRUNN zum Gegenstand umfassender geometrischer Untersuchungen gemacht. In zwei Arbeiten "Ovale und EifHichen" und "Kurven ohne Wendepunkte" aus den Jahren 1887 und 1889 (vgl. Literaturverzeichnis BRUNN [1J, [2J) hat er neben zahl reichen Satzen der verschiedensten Art tiber konvexe Bereiche und Korper einen Satz tiber die Flacheninhalte von parallelen ebenen Schnitten eines konvexen K6rpers bewiesen, der sich in der Folge als fundamental herausgestellt hat. Die Bedeutung dieses Satzes hervor gehoben zu haben, ist das Verdienst von MINKOWSKI. In mehreren Arbeiten, insbesondere in "Volumeri. und Oberflache" (1903) und in der groBztigig angelegten, unvollendet geblieben n Arbeit "Zur Theorie der konvexen K6rper" (Literaturverzeichnis [3], [4J) hat er durch Ein fUhrung von grundlegenden Begriffen wie Stutzfunktion, gemischtes VolulIl, en usw. die dem Problemkreis angemessenen formalen Hilfsmittel geschaffen und vor allem den Weg zu vielseitigen Anwendungen, speziell auf das isoperimetrische (isepiphane) und andere Extremalprobleme fUr konvexe Bereiche und K6rper er6ffnet. Weiterhin hat MINKOWSKI den engen Zusammenhang dieser Begriffsbildungen und Satze mit der Frage nach der Bestimmung konvexer Flachen durch ihre GAusssche Krtim mung aufgedeckt und tiefliegende diesbeztigliche Satze bewiesen.

919 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the Cramer-Smirnov and von Mises test to the parametric case, a suggestion of Cramer [1], see also [2].
Abstract: The "goodness of fit" problem, consisting of comparing the empirical and hypothetical cumulative distribution functions (cdf's), is treated here for the case when an auxiliary parameter is to be estimated. This extends the Cramer-Smirnov and von Mises test to the parametric case, a suggestion of Cramer [1], see also [2]. The characteristic function of the limiting distribution of the test function is found by consideration of a Guassian stochastic process.

137 citations


"The integral of a symmetric unimoda..." refers background in this paper

  • ...f ud[H*(u) - H(u)} = b[H*(b) - H(b)] - a[H*(a) - H(a)} (3) " + f [(H(u) - H*(u)]du....

    [...]

  • ...J a Since/(x) has a finite integral over E, bH(b)—>0 as b—>oo and hence also bH*(b)—>0 as b—*<x>; therefore the first term on the right in (3) can be made arbitrarily small in absolute value....

    [...]