scispace - formally typeset
Open AccessJournal ArticleDOI

The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations

TLDR
The Meso-NH Atmospheric Simulation Engine as mentioned in this paper is a tool for small and meso-scale atmospheric processes, which is based on the Lipps and Hemler form of the anelastic system.
Abstract
The Meso-NH Atmospheric Simulation Sys- tem is a joint eAort of the Centre National de Recher- ches Meteorologiques and Laboratoire d'Aerologie. It comprises several elements; a numerical model able to simulate the atmospheric motions, ranging from the large meso-alpha scale down to the micro-scale, with a comprehensive physical package, a flexible file manager, an ensemble of facilities to prepare initial states, either idealized or interpolated from meteorological analyses or forecasts, a flexible post-processing and graphical facility to visualize the results, and an ensemble of interactive procedures to control these functions. Some of the distinctive features of this ensemble are the following: the model is currently based on the Lipps and Hemler form of the anelastic system, but may evolve towards a more accurate form of the equations system. In the future, it will allow for simultaneous simulation of several scales of motion, by the so-called ''interactive grid-nesting technique''. It allows for the in-line com- putation and accumulation of various terms of the budget of several quantities. It allows for the transport and diAusion of passive scalars, to be coupled with a chemical module. It uses the relatively new Fortran 90 compiler. It is tailored to be easily implemented on any UNIX machine. Meso-NH is designed as a research tool for small and meso-scale atmospheric processes. It is freely accessible to the research community, and we have tried to make it as ''user-friendly'' as possible, and as general as possible, although these two goals sometimes appear contradictory. The present paper presents a general description of the adiabatic formulation and some of the basic validation simulations. A list of the currently available physical parametrizations and ini- tialization methods is also given. A more precise description of these aspects will be provided in a further paper.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A study of local turbulence and anisotropy during the afternoon and evening transitionwith an unmanned aerial system and mesoscale simulation

TL;DR: In this paper, the authors analyzed observations of turbulence during the Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) experimental field campaign that took place in Lannemezan (foothills of the Pyrenees) in summer 2011.
Journal ArticleDOI

Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

TL;DR: In this paper, the mesoscale dynamical aspects of the Mis- tral in the coastal area located at the exit of the Rh ˆ one-valley were investigated.
Journal ArticleDOI

Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

TL;DR: In this article, a ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants.
Journal ArticleDOI

Wind speed vertical distribution at Mt. Graham

Abstract: The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical distribution of the wind speed is necessary. In this paper a complete characterization of the vertical distribution of wind speed strength is done above Mt.Graham (Arizona, US), site of the Large Binocular Telescope. We provide a climatological study extended over 10 years using the operational analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF), we prove that this is representative of the wind speed vertical distribution at Mt. Graham with exception of the boundary layer and we prove that a mesoscale model can provide reliable nightly estimates of V(h) above this astronomical site from the ground up to the top of the atmosphere (~ 20 km).
Journal ArticleDOI

Sensitivity of three Mediterranean heavy rain events to two different sea surface fluxes parameterizations in high‐resolution numerical modeling

TL;DR: In this article, the sensitivity of short-range (24 h) high-resolution (2-3 km) forecasts to the sea surface fluxes parameterization for three representative torrential rainfall events was examined.
References
More filters
Journal ArticleDOI

Fully multidimensional flux-corrected transport algorithms for fluids

TL;DR: In this paper, the critical flux limiting stage is implemented in multidimensions without resort to time splitting, which allows the use of flux-corrected transport (FCT) techniques in multi-dimensional fluid problems for which time splitting would produce unacceptable numerical results.
Journal ArticleDOI

A Simple Parameterization of Land Surface Processes for Meteorological Models

TL;DR: In this article, a parameterization of land surface processes to be included in mesoscale and large-scale meteorological models is presented, where the number of parameters has been reduced as much as possible, while attempting to preserve the representation of the physics which controls the energy and water budgets.
Journal ArticleDOI

A Simple Boundary Condition for Unbounded Hyperbolic Flows

TL;DR: In this article, a Sommerfeld radiation condition (2.2) was proposed for problems requiring a prescribed open boundary, and two severe tests were used to demonstrate the applicability of the open boundary condition: collapsing bubble, a dynamic event which excites many different internal gravity waves.
Book ChapterDOI

Convective parameterization for mesoscale models : The Kain-Fritsch Scheme

TL;DR: The Kain-Fritsch (KF) convective parameterization scheme (CPS) is based on the same fundamental closure assumption as the Fritsch-Chappell (FC) (1980) scheme as mentioned in this paper.
Book ChapterDOI

On the distribution and continuity of water substance in atmospheric circulations

TL;DR: In this paper, the conservation and distribution of water substance in atmospheric circulations are considered within a frame of continuity principles, model air flows, and models of microphysical processes, where the simplest considerations of precipitation involve its vertical distribution in an updraft column, where condensate appears immediately as precipitation with uniform terminal fallspeed.
Related Papers (5)