scispace - formally typeset
Journal ArticleDOI

The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends

TLDR
In this article, it is shown that many of these attractive features of zirconia, especially fracture toughness and strength, are compromised after prolonged exposure to water vapor at intermediate temperatures (∼30°-300°C).
Abstract
Zirconia ceramics have found broad applications in a variety of energy and biomedical applications because of their unusual combination of strength, fracture toughness, ionic conductivity, and low thermal conductivity. These attractive characteristics are largely associated with the stabilization of the tetragonal and cubic phases through alloying with aliovalent ions. The large concentration of vacancies introduced to charge compensate of the aliovalent alloying is responsible for both the exceptionally high ionic conductivity and the unusually low, and temperature independent, thermal conductivity. The high fracture toughness exhibited by many of zirconia ceramics is attributed to the constraint of the tetragonal-to-monoclinic phase transformation and its release during crack propagation. In other zirconia ceramics containing the tetragonal phase, the high fracture toughness is associated with ferroelastic domain switching. However, many of these attractive features of zirconia, especially fracture toughness and strength, are compromised after prolonged exposure to water vapor at intermediate temperatures (∼30°–300°C) in a process referred to as low-temperature degradation (LTD), and initially identified over two decades ago. This is particularly so for zirconia in biomedical applications, such as hip implants and dental restorations. Less well substantiated is the possibility that the same process can also occur in zirconia used in other applications, for instance, zirconia thermal barrier coatings after long exposure at high temperature. Based on experience with the failure of zirconia femoral heads, as well as studies of LTD, it is shown that many of the problems of LTD can be mitigated by the appropriate choice of alloying and/or process control.

read more

Citations
More filters
Journal ArticleDOI

Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry.

TL;DR: A critical survey of all experimental data about the low temperature degradation of zirconia due to the tetragonal-to-monoclinic transformation shows that the main factors affecting the aging phenomenon are the stabilizer type and content, the residual stress and the grain size.
Journal ArticleDOI

Current status of zirconia restoration.

TL;DR: It is demonstrated that highly polished zirconia yielded lower antagonist wear compared with porcelains, and combined application of silica coating and/or silane coupler, and 10-methacryloyloxydecyl dihydrogen phosphate is currently one of the most reliable bonding systems for zirConia.
Journal ArticleDOI

The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model

TL;DR: In this paper, the structural, thermal, and dielectric properties of the ferroelectric phase of HfO2, ZrO2 and Hf0.5O2 are investigated with carefully validated density functional computations.
Journal ArticleDOI

Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects

TL;DR: A comprehensive and integrated review of thermal barrier coatings (TBCs) applied to turbine components is provided in this paper, where compositions, morphology, characteristics and performance data for new bonds to achieve longer TBC life are described.
Journal ArticleDOI

The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model

TL;DR: In this article, the structural, thermal, and dielectric properties of the ferroelectric phase of HfO$_2, ZrO_2$ and Hf$_{0.5}$ Zr$_{1-\chi}$ O$-2$ (HZO) are investigated with carefully validated density functional computations.
References
More filters
Book

Introduction to Ceramics

TL;DR: In this paper, the authors present a model for the development of the MICROSTRUCTURE in CERAMICS based on phase transformation, glass formation and glass-Ceramics.
Journal ArticleDOI

The Grotthuss mechanism

TL;DR: In this paper, it is suggested that the molecular mechanism behind prototropic mobility involves a periodic series of isomerizations between H 9 O 4 + and H 5 O 2 +, the first trigerred by hyrdogen-bond cleavage of a second-shell water molecule and the second by the reverse, hydrogen-bonder formation process.
Book

The physics of amorphous solids

TL;DR: The formation of amorphous solids Amorphous Morphology: The Geometry and Topology of Disorder Chalcogenide Glasses and Organic Polymers The Percolation Model Localization Delocalization Transitions Optical and Electrical Properties Index as discussed by the authors.
Journal ArticleDOI

State of the art of zirconia for dental applications

TL;DR: The two main processing techniques, soft and hard machining, are assessed in the light of their possible clinical implications and consequences on the long-term performance of zirconia.
Journal ArticleDOI

Phase relationships in the zirconia-yttria system

TL;DR: In this article, the conditions for the retention of a zirconia-rich tetragonal phase at ambient temperature were established and the existence of a miscibility gap, closed below the solidus temperature, in the yttria-rich solid solution region was proposed.
Related Papers (5)