scispace - formally typeset
Open AccessJournal ArticleDOI

The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers.

Helen A. Padykula, +1 more
- 01 Jul 1970 - 
- Vol. 46, Iss: 1, pp 27-41
Reads0
Chats0
TLDR
Distinct ultrastructural differences exist at the neuromuscular junctions of red, white, and intermediate fibers of a mammalian twitch skeletal muscle (albino rat diaphragm).
Abstract
Distinct ultrastructural differences exist at the neuromuscular junctions of red, white, and intermediate fibers of a mammalian twitch skeletal muscle (albino rat diaphragm). The primary criteria for recognizing the three fiber types are differences in fiber diameter, mitochondrial content, and width of the Z line. In the red fiber the neuromuscular relationship presents the least sarcoplasmic and axoplasmic surface at each contact. Points of contact are relatively discrete and separate, and axonal terminals are small and elliptical. The junctional folds are relatively shallow, sparse, and irregular in arrangement. Axoplasmic vesicles are moderate in number, and sarcoplasmic vesicles are sparse. In the white fiber long, flat axonal terminals present considerable axoplasmic surface. Vast sarcoplasmic surface area is created by long, branching, closely spaced junctional folds that may merge with folds at adjacent contacts to occupy a more continuous and widespread area. Axoplasmic and sarcoplasmic vesicles are numerous. Both axoplasmic and sarcoplasmic mitochondria of the white fiber usually contain intramitochondrial granules. The intermediate fiber has large axonal terminals that are associated with the most widely spaced and deepest junctional folds. In all three fiber types, the junctional sarcoplasm is rich in free ribosomes, cisternae of granular endoplasmic reticulum, and randomly distributed microtubules.

read more

Citations
More filters
Journal ArticleDOI

Fiber types in mammalian skeletal muscles.

TL;DR: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors.
Book ChapterDOI

Structure and function of intercellular junctions.

TL;DR: This chapter reviews the morphological information on intercellular junctions derived from thin-sectioning, negative staining and freeze-cleave techniques, as well as from x-ray diffraction and biochemical investigations, and correlates the structural parameters with known or proposed physiological functions.
Journal ArticleDOI

Identification of Epoxyeicosatrienoic Acids as Endothelium-Derived Hyperpolarizing Factors

TL;DR: Data support the hypothesis that the EETs are EDHFs, which causes endothelium-dependent relaxations of coronary arteries through its metabolism to epoxyeicosatrienoic acids by cytochrome P450 by boosting the open-state probability of a Ca2+-activated K+ channel in coronary smooth muscle cells.
OtherDOI

Motor Units: Anatomy, Physiology, and Functional Organization

TL;DR: The sections in this article are: Motor Unit Types: Histochemical Profiles and Ultrastructural Correlations, Anatomical Considerations, and Control of Muscular Action: Recruitment and Rate Modulation.
References
More filters
Journal ArticleDOI

Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation.

TL;DR: A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmia tetroxides alone.
Journal ArticleDOI

A study of fixation for electron microscopy

TL;DR: Fixation experiments with buffered OsO4 solutions have shown that the appearance of the fixed cells is conditioned by the pH of the fixative, and the quality of fixation can be materially improved by buffering the OsO 4 solutions at pH 7.3-7.5 with acetate-veronal buffer.
Journal ArticleDOI

Functional significance of cell size in spinal motoneurons

TL;DR: The present paper is concerned with the central part of the motoneuron and the significance of its size in synaptic transmission and asks whether the cell bodies (and dendrites) connected with large and small motor fibers have different functional properties which can be recognized by their discharge characteristics.
Journal ArticleDOI

Simple methods for "staining with lead" at high pH in electron microscopy.

TL;DR: It is thought that in these highly alkaline staining solutions lead is present as an hydroxide complex anion (plumbite ion) and that this anion is responsible for the staining, and the methods of preparation are based on this hypothesis.
Related Papers (5)