scispace - formally typeset
Journal ArticleDOI

Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review.

Reads0
Chats0
TLDR
In this article, a hypothesis is formulated to explain how microorganisms may become affected by gradually increasing soil metal concentrations and this is discussed in relation to defining safe or critical soil metal loadings for soil protection.
Abstract
An increasing body of evidence suggests that microorganisms are far more sensitive to heavy metal stress than soil animals or plants growing on the same soils. Not surprisingly, most studies of heavy metal toxicity to soil microorganisms have concentrated on effects where loss of microbial function can be observed and yet such studies may mask underlying effects on biodiversity within microbial populations and communities. The types of evidence which are available for determining critical metal concentrations or loadings for microbial processes and populations in agricultural soil are assessed, particularly in relation to the agricultural use of sewage sludge. Much of the confusion in deriving critical toxic concentrations of heavy metals in soils arises from comparison of experimental results based on short-term laboratory ecotoxicological studies with results from monitoring of long-term exposures of microbial populations to heavy metals in field experiments. The laboratory studies in effect measure responses to immediate, acute toxicity (disturbance) whereas the monitoring of field experiments measures responses to long-term chronic toxicity (stress) which accumulates gradually. Laboratory ecotoxicological studies are the most easily conducted and by far the most numerous, but are difficult to extrapolate meaningfully to toxic effects likely to occur in the field. Using evidence primarily derived from long-term field experiments, a hypothesis is formulated to explain how microorganisms may become affected by gradually increasing soil metal concentrations and this is discussed in relation to defining “safe” or “critical” soil metal loadings for soil protection.

read more

Citations
More filters
Journal ArticleDOI

Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes

TL;DR: The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals.

Effects of using wastewater as nutrient sources on soil chemical properties in peri-urban agricultural systems

TL;DR: In this article, the effects of using domestic wastewater in field experiments on Fluvisols soils in peri-urban areas of Hanoi and Nam Dinh cities were investigated.
Journal ArticleDOI

Arsenic Biotransformation in Solid Waste Residue: Comparison of Contributions from Bacteria with Arsenate and Iron Reducing Pathways

TL;DR: The results suggest that the arsC gene carriers mainly control the As speciation in the aqueous phase in aerobic environments, whereas in anaerobic conditions, the As Speciation should be regulated by arrA gene carriers, and As mobility is greatly enhanced by iron reduction.
Journal ArticleDOI

Relationships between field management, soil health, and microbial community composition

TL;DR: In this paper, the relationship between field management, soil health, and soil microbial abundance and composition (phospholipid fatty acid analysis (PLFA)) in soil collected from two fields (farmer-designated ‘good’ versus ‘poor’) across 34 diverse (livestock, grain or vegetable cropping) farms in Maritime Canada.
Journal ArticleDOI

Biological attributes of rehabilitated soils contaminated with heavy metals

TL;DR: Principal component analysis showed clustering of rehabilitated sites with contamination-free sites, and S1-R was intermediate between the most and least contaminated sites, demonstrating that the soil replacement and revegetation improved the biological condition of the soil.
References
More filters
Journal ArticleDOI

An extraction method for measuring soil microbial biomass c

TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Journal ArticleDOI

Phylogenetic identification and in situ detection of individual microbial cells without cultivation.

TL;DR: Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts.
Journal ArticleDOI

Diversity in tropical rain forests and coral reefs.

TL;DR: The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community as mentioned in this paper.
Book

Plant Strategies and Vegetation Processes

TL;DR: In this paper, the authors present plant strategies in the established phase and the regenerative phase in the emerging phase, respectively, and discuss the relationship between the two phases: primary strategies and secondary strategies.
Journal ArticleDOI

Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory

TL;DR: A triangular model based upon the three strategies of evolution in plants may be reconciled with the theory of r- and K-selection, provides an insight into the processes of vegetation succession and dominance, and appears to be capable of extension to fungi and to animals.
Related Papers (5)