scispace - formally typeset
Open AccessPosted Content

User Association for Load Balancing in Heterogeneous Cellular Networks

Reads0
Chats0
TLDR
A low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee is provided, and it is observed that simple per-tier biasing loses surprisingly little, if the bias values Aj are chosen carefully.
Abstract
For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rates for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor A_j>=1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide optimal association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe that simple per-tier biasing loses surprisingly little, if the bias values A_j are chosen carefully. Numerical results show a large (3.5x) throughput gain for cell-edge users and a 2x rate gain for median users relative to a max received power association.

read more

Citations
More filters
Journal ArticleDOI

What Will 5G Be

TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Journal ArticleDOI

A Survey of 5G Network: Architecture and Emerging Technologies

TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Journal ArticleDOI

Seven ways that HetNets are a cellular paradigm shift

TL;DR: The most important shifts in cellular technology in 10-20 years are distilled down to seven key factors, with the implications described and new models and techniques proposed for some, while others are ripe areas for future exploration.
Journal ArticleDOI

Modeling and Analyzing Millimeter Wave Cellular Systems

TL;DR: A baseline analytical approach based on stochastic geometry that allows the computation of the statistical distributions of the downlink signal-to-interference-plus-noise ratio (SINR) and also the per link data rate, which depends on the SINR as well as the average load is presented.
Journal ArticleDOI

An overview of load balancing in hetnets: old myths and open problems

TL;DR: It is explained how several long-standing assumptions about cellular networks need to be rethought in the context of a load-balanced HetNet: these are highlighted as three deeply entrenched myths that are then dispel.
References
More filters
Book

Parallel and Distributed Computation: Numerical Methods

TL;DR: This work discusses parallel and distributed architectures, complexity measures, and communication and synchronization issues, and it presents both Jacobi and Gauss-Seidel iterations, which serve as algorithms of reference for many of the computational approaches addressed later.
Journal ArticleDOI

Optimization flow control—I: basic algorithm and convergence

TL;DR: An optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates to solve the dual problem using a gradient projection algorithm.
Journal ArticleDOI

A survey on 3GPP heterogeneous networks

TL;DR: The need for an alternative strategy, where low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network is discussed, and a high-level overview of the 3GPP LTE air interface, network nodes, and spectrum allocation options is provided, along with the enabling mechanisms.
Journal ArticleDOI

Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

Abstract: Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given \sinr, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.
Journal ArticleDOI

Femtocells: Past, Present, and Future

TL;DR: This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology.
Related Papers (5)