scispace - formally typeset
Journal ArticleDOI

Variations of von Kármán coefficient in canonical flows

Hassan M. Nagib, +1 more
- 31 Oct 2008 - 
- Vol. 20, Iss: 10, pp 101518
TLDR
In this article, the overlap parameters for the logarithmic law are obtained for available turbulent pipe and channel flow data using composite profiles fitted to the mean velocity, and their resulting behavior with Reynolds number is examined for these flows and compared to results from boundary layers.
Abstract
The overlap parameters for the logarithmic law are obtained for available turbulent pipe and channel flow data using composite profiles fitted to the mean velocity. The composite profile incorporates κ, B, and Π as the varying parameters and their resulting behavior with Reynolds number is examined for these flows and compared to results from boundary layers. The von Karman coefficient in channel flow is smaller than the well-established value for zero pressure gradient turbulent boundary layers of 0.384, while in pipe flows it is consistently higher. In contrast, the estimates of the wake parameter Π are the smallest for channel flows and largest for boundary layers. Further, the Superpipe data are reanalyzed to reveal that κ=0.41 is a better value for the von Karman constant in pipe flow. The collective behavior of κ in boundary layers, pipes, and channels reveals that the von Karman coefficient is not universal and exhibits dependence not only on the pressure gradient but also on the flow geometry.

read more

Citations
More filters
Journal ArticleDOI

Direct numerical simulation of turbulent channel flow up to

TL;DR: In this paper, a direct numerical simulation of incompressible channel flow at a friction Reynolds number of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows.
Journal ArticleDOI

High–Reynolds Number Wall Turbulence

TL;DR: In this article, the authors review wall-bounded turbulent flows, particularly high-Reynolds number, zero-pressure gradient boundary layers, and fully developed pipe and channel flows.
Journal ArticleDOI

Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues

TL;DR: In this paper, the authors distill the salient advances of recent origin, particularly those that challenge textbook orthodoxy, and highlight some of the outstanding questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the principal model parameters, and the scaling of mean flow and Reynolds stresses.
Journal ArticleDOI

On the logarithmic region in wall turbulence

TL;DR: In this paper, the authors analyse recent experimental data in the Reynolds number range of nominally 2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface layer, and show that the data support the existence of a universal logarithmic region.
Journal ArticleDOI

A critical-layer framework for turbulent pipe flow

TL;DR: In this paper, a model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behavior of the very large scale motions.
References
More filters
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Journal ArticleDOI

Direct simulation of a turbulent boundary layer up to R sub theta = 1410

TL;DR: In this paper, the turbulent boundary layer on a flat plate, with zero pressure gradient, is simulated numerically at four stations between R sub theta = 225 and R sub tta = 1410.
Journal ArticleDOI

The law of the wake in the turbulent boundary layer

TL;DR: In this paper, the authors proposed to represent the mean-velocity profile by a linear combination of two universal functions, namely the law of the wall and the wake, and compared the results with experimental data.
Journal ArticleDOI

Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment

TL;DR: In this paper, the authors investigated the differences between fully developed turbulent flow in an axisymmetric pipe and a plane channel geometry, and compared the results obtained from a channel flow simulation.
Journal ArticleDOI

A theoretical and experimental study of wall turbulence

TL;DR: In this article, the dimensional-analysis approach to wall turbulence has been extended in a number of directions, including the incorporation of a Kolmogoroff (1941) spectral region.