scispace - formally typeset
Journal ArticleDOI

What is the goal of sensory coding

David J. Field
- 01 Jul 1994 - 
- Vol. 6, Iss: 4, pp 559-601
TLDR
It is proposed that compact coding schemes are insufficient to account for the receptive field properties of cells in the mammalian visual pathway and suggested that natural scenes, to a first approximation, can be considered as a sum of self-similar local functions (the inverse of a wavelet).
Abstract
A number of recent attempts have been made to describe early sensory coding in terms of a general information processing strategy. In this paper, two strategies are contrasted. Both strategies take advantage of the redundancy in the environment to produce more effective representations. The first is described as a "compact" coding scheme. A compact code performs a transform that allows the input to be represented with a reduced number of vectors (cells) with minimal RMS error. This approach has recently become popular in the neural network literature and is related to a process called Principal Components Analysis (PCA). A number of recent papers have suggested that the optimal compact code for representing natural scenes will have units with receptive field profiles much like those found in the retina and primary visual cortex. However, in this paper, it is proposed that compact coding schemes are insufficient to account for the receptive field properties of cells in the mammalian visual pathway. In contrast, it is proposed that the visual system is near to optimal in representing natural scenes only if optimality is defined in terms of "sparse distributed" coding. In a sparse distributed code, all cells in the code have an equal response probability across the class of images but have a low response probability for any single image. In such a code, the dimensionality is not reduced. Rather, the redundancy of the input is transformed into the redundancy of the firing pattern of cells. It is proposed that the signature for a sparse code is found in the fourth moment of the response distribution (i.e., the kurtosis). In measurements with 55 calibrated natural scenes, the kurtosis was found to peak when the bandwidths of the visual code matched those of cells in the mammalian visual cortex. Codes resembling "wavelet transforms" are proposed to be effective because the response histograms of such codes are sparse (i.e., show high kurtosis) when presented with natural scenes. It is proposed that the structure of the image that allows sparse coding is found in the phase spectrum of the image. It is suggested that natural scenes, to a first approximation, can be considered as a sum of self-similar local functions (the inverse of a wavelet). Possible reasons for why sensory systems would evolve toward sparse coding are presented.

read more

Citations
More filters
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Journal ArticleDOI

Learning the parts of objects by non-negative matrix factorization

TL;DR: An algorithm for non-negative matrix factorization is demonstrated that is able to learn parts of faces and semantic features of text and is in contrast to other methods that learn holistic, not parts-based, representations.
Journal ArticleDOI

An information-maximization approach to blind separation and blind deconvolution

TL;DR: It is suggested that information maximization provides a unifying framework for problems in "blind" signal processing and dependencies of information transfer on time delays are derived.
Proceedings Article

Algorithms for Non-negative Matrix Factorization

TL;DR: Two different multiplicative algorithms for non-negative matrix factorization are analyzed and one algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized Kullback-Leibler divergence.
Journal ArticleDOI

Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope

TL;DR: The performance of the spatial envelope model shows that specific information about object shape or identity is not a requirement for scene categorization and that modeling a holistic representation of the scene informs about its probable semantic category.
References
More filters
Journal ArticleDOI

A theory for multiresolution signal decomposition: the wavelet representation

TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Journal ArticleDOI

Orthonormal bases of compactly supported wavelets

TL;DR: This work construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity, by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction.
Journal ArticleDOI

The Laplacian Pyramid as a Compact Image Code

TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.

Theory of communication

Dennis Gabor
Journal ArticleDOI

Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

TL;DR: Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution.
Related Papers (5)