scispace - formally typeset
Open AccessProceedings Article

Algorithms for Non-negative Matrix Factorization

TLDR
Two different multiplicative algorithms for non-negative matrix factorization are analyzed and one algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized Kullback-Leibler divergence.
Abstract
Non-negative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized Kullback-Leibler divergence. The monotonic convergence of both algorithms can be proven using an auxiliary function analogous to that used for proving convergence of the Expectation-Maximization algorithm. The algorithms can also be interpreted as diagonally rescaled gradient descent, where the rescaling factor is optimally chosen to ensure convergence.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Book

Machine Learning : A Probabilistic Perspective

TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Journal ArticleDOI

Non-negative Matrix Factorization with Sparseness Constraints

TL;DR: In this paper, the notion of sparseness is incorporated into NMF to improve the found decompositions, and the authors provide complete MATLAB code both for standard NMF and for their extension.
Journal ArticleDOI

Online Learning for Matrix Factorization and Sparse Coding

TL;DR: In this paper, a new online optimization algorithm based on stochastic approximations is proposed to solve the large-scale matrix factorization problem, which scales up gracefully to large data sets with millions of training samples.
Posted Content

Online Learning for Matrix Factorization and Sparse Coding

TL;DR: A new online optimization algorithm is proposed, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems.
References
More filters
Book

Principal Component Analysis

TL;DR: In this article, the authors present a graphical representation of data using Principal Component Analysis (PCA) for time series and other non-independent data, as well as a generalization and adaptation of principal component analysis.
Journal ArticleDOI

Eigenfaces for recognition

TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Journal ArticleDOI

Learning the parts of objects by non-negative matrix factorization

TL;DR: An algorithm for non-negative matrix factorization is demonstrated that is able to learn parts of faces and semantic features of text and is in contrast to other methods that learn holistic, not parts-based, representations.
Related Papers (5)