scispace - formally typeset
Open AccessProceedings ArticleDOI

What makes a good model of natural images

Reads0
Chats0
TLDR
A tractable lower and upper bounds on the partition function of models based on filter outputs and efficient learning algorithms that do not require any sampling are presented and applied to previous models shows that the nonintuitive features learned are not an artifact of the learning process but rather are capturing robust properties of natural images.
Abstract
Many low-level vision algorithms assume a prior probability over images, and there has been great interest in trying to learn this prior from examples. Since images are very non Gaussian, high dimensional, continuous signals, learning their distribution presents a tremendous computational challenge. Perhaps the most successful recent algorithm is the Fields of Experts (FOE) [20] model which has shown impressive performance by modeling image statistics with a product of potentials defined on filter outputs. However, as in previous models of images based on filter outputs [30], calculating the probability of an image given the model requires evaluating an intractable partition function. This makes learning very slow (requires Monte-Carlo sampling at every step) and makes it virtually impossible to compare the likelihood of two different models. Given this computational difficulty, it is hard to say whether nonintu-itive features learned by such models represent a true property of natural images or an artifact of the approximations used during learning. In this paper we present (1) tractable lower and upper bounds on the partition function of models based on filter outputs and (2) efficient learning algorithms that do not require any sampling. Our results are based on recent results in machine learning that deal with Gaussian potentials. We extend these results to non-Gaussian potentials and derive a novel, basis rotation algorithm for approximating the maximum likelihood filters. Our results allow us to (1) rigorously compare the likelihood of different models and (2) calculate high likelihood models of natural image statistics in a matter of minutes. Applying our results to previous models shows that the nonintuitive features are not an artifact of the learning process but rather are capturing robust properties of natural images.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

TL;DR: Zhang et al. as mentioned in this paper proposed a feed-forward denoising convolutional neural networks (DnCNNs) to handle Gaussian denobling with unknown noise level.
Book

Computer Vision: Algorithms and Applications

TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Proceedings ArticleDOI

From learning models of natural image patches to whole image restoration

TL;DR: A generic framework which allows for whole image restoration using any patch based prior for which a MAP (or approximate MAP) estimate can be calculated is proposed and a generic, surprisingly simple Gaussian Mixture prior is presented, learned from a set of natural images.
Journal ArticleDOI

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

TL;DR: Zhang et al. as discussed by the authors proposed a denoising convolutional neural network (DnCNN) to handle Gaussian denoizing with unknown noise level, which implicitly removes the latent clean image in the hidden layers.
Proceedings ArticleDOI

Image denoising: Can plain neural networks compete with BM3D?

TL;DR: This work attempts to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches and shows that by training on large image databases it is able to compete with the current state-of-the-art image denoising methods.
References
More filters
Journal ArticleDOI

Determining optical flow

TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Journal ArticleDOI

Independent component analysis: algorithms and applications

TL;DR: The basic theory and applications of ICA are presented, and the goal is to find a linear representation of non-Gaussian data so that the components are statistically independent, or as independent as possible.
Proceedings ArticleDOI

Determining Optical Flow

TL;DR: In this article, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Journal ArticleDOI

Emergence of simple-cell receptive field properties by learning a sparse code for natural images

TL;DR: It is shown that a learning algorithm that attempts to find sparse linear codes for natural scenes will develop a complete family of localized, oriented, bandpass receptive fields, similar to those found in the primary visual cortex.
Related Papers (5)