scispace - formally typeset
Search or ask a question

Showing papers on "Commonsense reasoning published in 2020"


Journal ArticleDOI
Gen Li1, Nan Duan2, Yuejian Fang1, Ming Gong2, Daxin Jiang2 
03 Apr 2020
TL;DR: After pretraining on large-scale image-caption pairs, Unicoder-VL is transferred to caption-based image-text retrieval and visual commonsense reasoning, with just one additional output layer, and shows the powerful ability of the cross-modal pre-training.
Abstract: We propose Unicoder-VL, a universal encoder that aims to learn joint representations of vision and language in a pre-training manner. Borrow ideas from cross-lingual pre-trained models, such as XLM (Lample and Conneau 2019) and Unicoder (Huang et al. 2019), both visual and linguistic contents are fed into a multi-layer Transformer (Vaswani et al. 2017) for the cross-modal pre-training, where three pre-trained tasks are employed, including Masked Language Modeling(MLM), Masked Object Classification(MOC) and Visual-linguistic Matching(VLM). The first two tasks learn context-aware representations for input tokens based on linguistic and visual contents jointly. The last task tries to predict whether an image and a text describe each other. After pretraining on large-scale image-caption pairs, we transfer Unicoder-VL to caption-based image-text retrieval and visual commonsense reasoning, with just one additional output layer. We achieve state-of-the-art or comparable results on both two tasks and show the powerful ability of the cross-modal pre-training.

647 citations


Journal ArticleDOI
03 Apr 2020
TL;DR: The task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA are introduced and analysis about the dimensions of knowledge that existing models lack are provided, which offers significant opportunities for future research.
Abstract: To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems. While recent pretrained models (such as BERT) have made progress on question answering over more abstract domains – such as news articles and encyclopedia entries, where text is plentiful – in more physical domains, text is inherently limited due to reporting bias. Can AI systems learn to reliably answer physical commonsense questions without experiencing the physical world?In this paper, we introduce the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Though humans find the dataset easy (95% accuracy), large pretrained models struggle (∼75%). We provide analysis about the dimensions of knowledge that existing models lack, which offers significant opportunities for future research.

361 citations


Proceedings Article
30 Apr 2020
TL;DR: In this paper, a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short), is introduced.
Abstract: We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input. In it, each element of the input is either of a word from the input sentence, or a region-of-interest (RoI) from the input image. It is designed to fit for most of the visual-linguistic downstream tasks. To better exploit the generic representation, we pre-train VL-BERT on the massive-scale Conceptual Captions dataset, together with text-only corpus. Extensive empirical analysis demonstrates that the pre-training procedure can better align the visual-linguistic clues and benefit the downstream tasks, such as visual commonsense reasoning, visual question answering and referring expression comprehension. It is worth noting that VL-BERT achieved the first place of single model on the leaderboard of the VCR benchmark.

349 citations


Proceedings Article
01 Apr 2020
TL;DR: A novel adversarial training algorithm is proposed, FreeLB, that promotes higher invariance in the embedding space, by adding adversarial perturbations to word embeddings and minimizing the resultant adversarial risk inside different regions around input samples.
Abstract: Adversarial training, which minimizes the maximal risk for label-preserving input perturbations, has proved to be effective for improving the generalization of language models. In this work, we propose a novel adversarial training algorithm, FreeLB, that promotes higher invariance in the embedding space, by adding adversarial perturbations to word embeddings and minimizing the resultant adversarial risk inside different regions around input samples. To validate the effectiveness of the proposed approach, we apply it to Transformer-based models for natural language understanding and commonsense reasoning tasks. Experiments on the GLUE benchmark show that when applied only to the finetuning stage, it is able to improve the overall test scores of BERT-base model from 78.3 to 79.4, and RoBERTa-large model from 88.5 to 88.8. In addition, the proposed approach achieves state-of-the-art single-model test accuracies of 85.44% and 67.75% on ARC-Easy and ARC-Challenge. Experiments on CommonsenseQA benchmark further demonstrate that FreeLB can be generalized and boost the performance of RoBERTa-large model on other tasks as well.

313 citations


Posted Content
TL;DR: To enable large-scale training, VILLA adopts the "free" adversarial training strategy, and combines it with KL-divergence-based regularization to promote higher invariance in the embedding space.
Abstract: We present VILLA, the first known effort on large-scale adversarial training for vision-and-language (V+L) representation learning. VILLA consists of two training stages: (i) task-agnostic adversarial pre-training; followed by (ii) task-specific adversarial finetuning. Instead of adding adversarial perturbations on image pixels and textual tokens, we propose to perform adversarial training in the embedding space of each modality. To enable large-scale training, we adopt the "free" adversarial training strategy, and combine it with KL-divergence-based regularization to promote higher invariance in the embedding space. We apply VILLA to current best-performing V+L models, and achieve new state of the art on a wide range of tasks, including Visual Question Answering, Visual Commonsense Reasoning, Image-Text Retrieval, Referring Expression Comprehension, Visual Entailment, and NLVR2.

271 citations


Posted Content
TL;DR: MAD-X is proposed, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations and introduces a novel invertible adapter architecture and a strong baseline method for adapting a pretrained multilingual model to a new language.
Abstract: The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at this http URL

228 citations


Journal ArticleDOI
03 Apr 2020
TL;DR: This work introduces WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset, and establishes new state-of-the-art results on five related benchmarks.
Abstract: The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense.To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4 – 79.1%, which are ∼15-35% (absolute) below human performance of 94.0%, depending on the amount of the training data allowed (2% – 100% respectively).Furthermore, we establish new state-of-the-art results on five related benchmarks — WSC (→ 90.1%), DPR (→ 93.1%), COPA(→ 90.6%), KnowRef (→ 85.6%), and Winogender (→ 97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.

223 citations


Book ChapterDOI
01 Jan 2020
TL;DR: This chapter presents the challenges of NLP, progress so far made in this field, NLP applications, components of N LP, and grammar of English language—the way machine requires it.
Abstract: The abundant volume of natural language text in the connected world, though having a large content of knowledge, but it is becoming increasingly difficult to disseminate it by a human to discover the knowledge/wisdom in it, specifically within any given time limits. The automated NLP is aimed to do this job effectively and with accuracy, like a human does it (for a limited of amount text). This chapter presents the challenges of NLP, progress so far made in this field, NLP applications, components of NLP, and grammar of English language—the way machine requires it. In addition, covers the specific areas like probabilistic parsing, ambiguities and their resolution, information extraction, discourse analysis, NL question-answering, commonsense interfaces, commonsense thinking and reasoning, causal-diversity, and various tools for NLP. Finally, the chapter summary, and a set of relevant exercises are presented.

181 citations


Proceedings ArticleDOI
30 Apr 2020
TL;DR: This paper proposed MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations, and introduced a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language.
Abstract: The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.

169 citations


Proceedings ArticleDOI
17 Mar 2020
TL;DR: This work focuses on BERT and RoBERTa, and shows that when used out-of-the-box, pre-trained models are calibrated in-domain, and compared to baselines, their calibration error out- of-domain can be as much as 3.5x lower.
Abstract: Pre-trained Transformers are now ubiquitous in natural language processing, but despite their high end-task performance, little is known empirically about whether they are calibrated. Specifically, do these models' posterior probabilities provide an accurate empirical measure of how likely the model is to be correct on a given example? We focus on BERT and RoBERTa in this work, and analyze their calibration across three tasks: natural language inference, paraphrase detection, and commonsense reasoning. For each task, we consider in-domain as well as challenging out-of-domain settings, where models face more examples they should be uncertain about. We show that: (1) when used out-of-the-box, pre-trained models are calibrated in-domain, and compared to baselines, their calibration error out-of-domain can be as much as 3.5x lower; (2) temperature scaling is effective at further reducing calibration error in-domain, and using label smoothing to deliberately increase empirical uncertainty helps calibrate posteriors out-of-domain.

154 citations


Proceedings Article
30 Apr 2020
TL;DR: For example, the authors investigate the feasibility of abductive reasoning in natural language inference and generation and show that the best model achieves 68.9% accuracy, well below human performance of 91.4%.
Abstract: Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation. While abduction has long been considered to be at the core of how people interpret and read between the lines in natural language (Hobbs et al., 1988), there has been relatively little research in support of abductive natural language inference and generation. We present the first study that investigates the viability of language-based abductive reasoning. We introduce a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations. Based on this dataset, we conceptualize two new tasks – (i) Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and (ii) Abductive NLG: a conditional generation task for explaining given observations in natural language. On Abductive NLI, the best model achieves 68.9% accuracy, well below human performance of 91.4%. On Abductive NLG, the current best language generators struggle even more, as they lack reasoning capabilities that are trivial for humans. Our analysis leads to new insights into the types of reasoning that deep pre-trained language models fail to perform—despite their strong performance on the related but more narrowly defined task of entailment NLI—pointing to interesting avenues for future research.

Posted Content
TL;DR: An unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks, inspired by inquiry-based discovery learning, which improves performance on several benchmarks and competes with models that obtain knowledge from external KBs.
Abstract: Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as "$\textit{what is the definition of ...}$" to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as useful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.

Proceedings ArticleDOI
01 Jul 2020
TL;DR: It is found that while state-of-the-art neural models are effective at high-level categorization of whether a given statement projects unwanted social bias, they are not effective at spelling out more detailed explanations in terms of Social Bias Frames.
Abstract: Warning: this paper contains content that may be offensive or upsetting. Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but rather the implied meanings, that frame people’s judgments about others. For example, given a statement that “we shouldn’t lower our standards to hire more women,” most listeners will infer the implicature intended by the speaker - that “women (candidates) are less qualified.” Most semantic formalisms, to date, do not capture such pragmatic implications in which people express social biases and power differentials in language. We introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others. In addition, we introduce the Social Bias Inference Corpus to support large-scale modelling and evaluation with 150k structured annotations of social media posts, covering over 34k implications about a thousand demographic groups. We then establish baseline approaches that learn to recover Social Bias Frames from unstructured text. We find that while state-of-the-art neural models are effective at high-level categorization of whether a given statement projects unwanted social bias (80% F1), they are not effective at spelling out more detailed explanations in terms of Social Bias Frames. Our study motivates future work that combines structured pragmatic inference with commonsense reasoning on social implications.

Journal ArticleDOI
03 Apr 2020
TL;DR: This work argues that IF games are an excellent testbed for studying language-based autonomous agents and introduces Jericho, a learning environment for man-made IF games and conducts a comprehensive study of text-agents across a rich set of games, highlighting directions in which agents can improve.
Abstract: A hallmark of human intelligence is the ability to understand and communicate with language. Interactive Fiction games are fully text-based simulation environments where a player issues text commands to effect change in the environment and progress through the story. We argue that IF games are an excellent testbed for studying language-based autonomous agents. In particular, IF games combine challenges of combinatorial action spaces, language understanding, and commonsense reasoning. To facilitate rapid development of language-based agents, we introduce Jericho, a learning environment for man-made IF games and conduct a comprehensive study of text-agents across a rich set of games, highlighting directions in which agents can improve.

Proceedings ArticleDOI
14 Feb 2020
TL;DR: The CommonGen dataset as discussed by the authors is a set of common concepts (e.g., dog, frisbee, catch, throw) and the task is to generate a coherent sentence describing an everyday scenario using these concepts.
Abstract: Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., dog, frisbee, catch, throw); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., “a man throws a frisbee and his dog catches it”). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 77k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance (31.6% v.s. 63.5% in SPICE metric). Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA (76.9% to 78.4 in dev accuracy) by generating additional context.

Journal ArticleDOI
03 Apr 2020
TL;DR: QuAIL is presented, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system.
Abstract: The recent explosion in question answering research produced a wealth of both factoid reading comprehension (RC) and commonsense reasoning datasets. Combining them presents a different kind of task: deciding not simply whether information is present in the text, but also whether a confident guess could be made for the missing information. We present QuAIL, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system. QuAIL contains 15K multi-choice questions for 800 texts in 4 domains. Crucially, it offers both general and text-specific questions, unlikely to be found in pretraining data. We show that QuAIL poses substantial challenges to the current state-of-the-art systems, with a 30% drop in accuracy compared to the most similar existing dataset.

Posted Content
TL;DR: A novel knowledge graphaugmented pre-trained language generation model KG-BART is proposed, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output and can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets.
Abstract: Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Posted Content
TL;DR: This work introduces Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, revealing that current methods based on multilingual pretraining and zero-shot fine-tuning transfer suffer from the curse of multilinguality and fall short of performance in monolingual settings by a large margin.
Abstract: In order to simulate human language capacity, natural language processing systems must complement the explicit information derived from raw text with the ability to reason about the possible causes and outcomes of everyday situations. Moreover, the acquired world knowledge should generalise to new languages, modulo cultural differences. Advances in machine commonsense reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages. We benchmark a range of state-of-the-art models on this novel dataset, revealing that current methods based on multilingual pretraining and zero-shot fine-tuning transfer suffer from the curse of multilinguality and fall short of performance in monolingual settings by a large margin. Finally, we propose ways to adapt these models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. XCOPA is available at this http URL.

Posted Content
TL;DR: This work investigates G-DAUG^C, a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting, and demonstrates that it produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
Abstract: Recent advances in commonsense reasoning depend on large-scale human-annotated training data to achieve peak performance. However, manual curation of training examples is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit on. We investigate G-DAUG^C, a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting. Our approach generates synthetic examples using pretrained language models, and selects the most informative and diverse set of examples for data augmentation. In experiments with multiple commonsense reasoning benchmarks, G-DAUG^C consistently outperforms existing data augmentation methods based on back-translation, and establishes a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA. Further, in addition to improvements in in-distribution accuracy, G-DAUG^C-augmented training also enhances out-of-distribution generalization, showing greater robustness against adversarial or perturbed examples. Our analysis demonstrates that G-DAUG^C produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance. Our findings encourage future research toward generative data augmentation to enhance both in-distribution learning and out-of-distribution generalization.

Proceedings ArticleDOI
11 Apr 2020
TL;DR: This paper propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks, inspired by inquiry-based discovery learning (Bruner, 1961).
Abstract: Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as "what is the definition of..." to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.

Proceedings ArticleDOI
01 Nov 2020
TL;DR: The authors introduce a cross-lingual choice of plausible alternatives (XCOPA) dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurimac Quechua and Haitian Creole.
Abstract: In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurimac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.

Posted Content
TL;DR: This work proposes VisualComet, the novel framework of visual commonsense reasoning tasks to predict events thatmight have happened before, events that might happen next, and the intents of the people at present, and introduces the first large-scale repository of Visual Commonsense Graphs, allowing for tighter integration between images and text.
Abstract: Even from a single frame of a still image, people can reason about the dynamic story of the image before, after, and beyond the frame. For example, given an image of a man struggling to stay afloat in water, we can reason that the man fell into the water sometime in the past, the intent of that man at the moment is to stay alive, and he will need help in the near future or else he will get washed away. We propose VisualComet, the novel framework of visual commonsense reasoning tasks to predict events that might have happened before, events that might happen next, and the intents of the people at present. To support research toward visual commonsense reasoning, we introduce the first large-scale repository of Visual Commonsense Graphs that consists of over 1.4 million textual descriptions of visual commonsense inferences carefully annotated over a diverse set of 60,000 images, each paired with short video summaries of before and after. In addition, we provide person-grounding (i.e., co-reference links) between people appearing in the image and people mentioned in the textual commonsense descriptions, allowing for tighter integration between images and text. We establish strong baseline performances on this task and demonstrate that integration between visual and textual commonsense reasoning is the key and wins over non-integrative alternatives.

Proceedings ArticleDOI
01 Jul 2020
TL;DR: This tutorial organizes this tutorial to provide researchers with the critical foundations and recent advances in commonsense representation and reasoning, in the hopes of casting a brighter light on this promising area of future research.
Abstract: Commonsense knowledge, such as knowing that “bumping into people annoys them” or “rain makes the road slippery”, helps humans navigate everyday situations seamlessly Yet, endowing machines with such human-like commonsense reasoning capabilities has remained an elusive goal of artificial intelligence research for decades In recent years, commonsense knowledge and reasoning have received renewed attention from the natural language processing (NLP) community, yielding exploratory studies in automated commonsense understanding We organize this tutorial to provide researchers with the critical foundations and recent advances in commonsense representation and reasoning, in the hopes of casting a brighter light on this promising area of future research In our tutorial, we will (1) outline the various types of commonsense (eg, physical, social), and (2) discuss techniques to gather and represent commonsense knowledge, while highlighting the challenges specific to this type of knowledge (eg, reporting bias) We will then (3) discuss the types of commonsense knowledge captured by modern NLP systems (eg, large pretrained language models), and (4) present ways to measure systems’ commonsense reasoning abilities We will finish with (5) a discussion of various ways in which commonsense reasoning can be used to improve performance on NLP tasks, exemplified by an (6) interactive session on integrating commonsense into a downstream task

Proceedings ArticleDOI
01 Nov 2020
TL;DR: From Defeasible NLI, both a classification and generation task for defeasible inference are developed, and it is demonstrated that the generation task is much more challenging.
Abstract: Defeasible inference is a mode of reasoning in which an inference (X is a bird, therefore X flies) may be weakened or overturned in light of new evidence (X is a penguin). Though long recognized in classical AI and philosophy, defeasible inference has not been extensively studied in the context of contemporary data-driven research on natural language inference and commonsense reasoning. We introduce Defeasible NLI (abbreviated 𝛿-NLI), a dataset for defeasible inference in natural language. Defeasible NLI contains extensions to three existing inference datasets covering diverse modes of reasoning: common sense, natural language inference, and social norms. From Defeasible NLI, we develop both a classification and generation task for defeasible inference, and demonstrate that the generation task is much more challenging. Despite lagging human performance, however, generative models trained on this data are capable of writing sentences that weaken or strengthen a specified inference up to 68% of the time.

Posted Content
TL;DR: A self-supervised method to solve Pronoun Disambiguation and Winograd Schema Challenge problems is proposed, based on the recently introduced transformer networks, BERT, that exhibits strong performance on many NLP benchmarks.
Abstract: We propose a self-supervised method to solve Pronoun Disambiguation and Winograd Schema Challenge problems. Our approach exploits the characteristic structure of training corpora related to so-called "trigger" words, which are responsible for flipping the answer in pronoun disambiguation. We achieve such commonsense reasoning by constructing pair-wise contrastive auxiliary predictions. To this end, we leverage a mutual exclusive loss regularized by a contrastive margin. Our architecture is based on the recently introduced transformer networks, BERT, that exhibits strong performance on many NLP benchmarks. Empirical results show that our method alleviates the limitation of current supervised approaches for commonsense reasoning. This study opens up avenues for exploiting inexpensive self-supervision to achieve performance gain in commonsense reasoning tasks.

Posted Content
TL;DR: It is shown that while only incrementally pre-trained on a relatively small corpus for a few steps, CALM outperforms baseline methods by a consistent margin and even comparable with some larger PTLMs, which suggests that CALM can serve as a general, plug-and-play method for improving the commonsense reasoning ability of a PTLM.
Abstract: Pre-trained language models (PTLM) have achieved impressive results in a range of natural language understanding (NLU) and generation (NLG) tasks. However, current pre-training objectives such as masked token prediction (for BERT-style PTLMs) and masked span infilling (for T5-style PTLMs) do not explicitly model the relational commonsense knowledge about everyday concepts, which is crucial to many downstream tasks that need common sense to understand or generate. To augment PTLMs with concept-centric commonsense knowledge, in this paper, we propose both generative and contrastive objectives for learning common sense from the text, and use them as intermediate self-supervised learning tasks for incrementally pre-training PTLMs (before task-specific fine-tuning on downstream datasets). Furthermore, we develop a joint pre-training framework to unify generative and contrastive objectives so that they can mutually reinforce each other. Extensive experimental results show that our method, concept-aware language model (CALM), can pack more commonsense knowledge into the parameters of a pre-trained text-to-text transformer without relying on external knowledge graphs, yielding better performance on both NLU and NLG tasks. We show that while only incrementally pre-trained on a relatively small corpus for a few steps, CALM outperforms baseline methods by a consistent margin and even comparable with some larger PTLMs, which suggests that CALM can serve as a general, plug-and-play method for improving the commonsense reasoning ability of a PTLM.

Posted Content
TL;DR: A neuro-symbolic temporal reasoning model, SymTime, is proposed, which exploits distant supervision signals from large-scale text and uses temporal rules to combine start times and durations to infer end times and generalizes to other temporal reasoning tasks.
Abstract: We propose TRACIE, a novel temporal reasoning dataset that evaluates the degree to which systems understand implicit events -- events that are not mentioned explicitly in natural language text but can be inferred from it. This introduces a new challenge in temporal reasoning research, where prior work has focused on explicitly mentioned events. Human readers can infer implicit events via commonsense reasoning, resulting in a more comprehensive understanding of the situation and, consequently, better reasoning about time. We find, however, that state-of-the-art models struggle when predicting temporal relationships between implicit and explicit events. To address this, we propose a neuro-symbolic temporal reasoning model, SYMTIME, which exploits distant supervision signals from large-scale text and uses temporal rules to combine start times and durations to infer end times. SYMTIME outperforms strong baseline systems on TRACIE by 5%, and by 11% in a zero prior knowledge training setting. Our approach also generalizes to other temporal reasoning tasks, as evidenced by a gain of 1%-9% on MATRES, an explicit event benchmark.

Posted Content
24 Apr 2020
TL;DR: G-DAUG^C as mentioned in this paper generates synthetic examples using pretrained language models, and selects the most informative and diverse set of examples for data augmentation, achieving state-of-the-art performance on WinoGrande, CODAH and CommonsenseQA.
Abstract: Recent advances in commonsense reasoning depend on large-scale human-annotated training data to achieve peak performance. However, manual curation of training examples is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit on. We investigate G-DAUG^C, a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting. Our approach generates synthetic examples using pretrained language models, and selects the most informative and diverse set of examples for data augmentation. In experiments with multiple commonsense reasoning benchmarks, G-DAUG^C consistently outperforms existing data augmentation methods based on back-translation, and establishes a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA. Further, in addition to improvements in in-distribution accuracy, G-DAUG^C-augmented training also enhances out-of-distribution generalization, showing greater robustness against adversarial or perturbed examples. Our analysis demonstrates that G-DAUG^C produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance. Our findings encourage future research toward generative data augmentation to enhance both in-distribution learning and out-of-distribution generalization.

Proceedings Article
11 Jun 2020
TL;DR: VILLA as mentioned in this paper adopts the free adversarial training strategy and combines it with KL-divergence-based regularization to promote higher invariance in the embedding space.
Abstract: We present VILLA, the first known effort on large-scale adversarial training for vision-and-language (V+L) representation learning. VILLA consists of two training stages: (i) task-agnostic adversarial pre-training; followed by (ii) task-specific adversarial finetuning. Instead of adding adversarial perturbations on image pixels and textual tokens, we propose to perform adversarial training in the embedding space of each modality. To enable large-scale training, we adopt the “free” adversarial training strategy and combine it with KL-divergence-based regularization to promote higher invariance in the embedding space. We apply VILLA to current best-performing V+L models, and achieve a new state of the art on a wide range of tasks, including Visual Question Answering, Visual Commonsense Reasoning, Image-Text Retrieval, Referring Expression Comprehension, Visual Entailment, and NLVR.

Posted Content
TL;DR: A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips, spanning over 582 hours of video.
Abstract: We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text. Given a video clip with aligned subtitles as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip. A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips, spanning over 582 hours of video. These video clips contain rich content with diverse temporal dynamics, event shifts, and people interactions, collected from two sources: (i) popular TV shows, and (ii) movie clips from YouTube channels. In order to address our new multimodal inference task, a model is required to possess sophisticated reasoning skills, from surface-level grounding (e.g., identifying objects and characters in the video) to in-depth commonsense reasoning (e.g., inferring causal relations of events in the video). We present a detailed analysis of the dataset and an extensive evaluation over many strong baselines, providing valuable insights on the challenges of this new task.