scispace - formally typeset
Search or ask a question

Showing papers on "Secondary circulation published in 2020"


Journal ArticleDOI
TL;DR: Using high-resolution climate simulations, it is found that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions, tightly related to the atmospheric forcing.
Abstract: Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean.

40 citations


Journal ArticleDOI
TL;DR: The RegionalOcean Modeling System (ROMS) as discussed by the authors was used to simulate sub-mesoscale turbulent patterns and processes and analyse their properties and dynamics, and the results showed good agreement with observations, while some observed details within a small cyclonic eddy are only partly reconstructed, most likely due to a lack of horizontal resolution or nonhydrostatic effects.
Abstract: . In order to simulate submesoscale turbulent patterns and processes (STPPs) and to analyse their properties and dynamics, the Regional Ocean Modeling System (ROMS) was run for June 2016 in a subregion of the Baltic Sea. To create a realistic mesoscale environment, ROMS with 500 m horizontal resolution (referred to as R500) is one-way nested into an existing operational model, and STPPs with horizontal scales km are resolved with a second nest of 100 m resolution (R100). Both nests use 10 terrain-following layers in the vertical. The comparison of the R500 results with a satellite image shows fair agreement. While R500 is driven by realistic air–sea fluxes, the atmospheric forcing is turned off in R100 because it prevents the generation of STPPs and blurs submesoscale structures. Therefore, R100 provides deep insight into ageostrophic processes and associated quantities under quasi-adiabatic conditions that are approximately met in no-wind or light-wind situations. The validity of the results is furthermore limited to the selected region and the time of the year. STPPs evolve rapidly within a about a day. They are characterized by vertical speeds of 𝒪 (10) m d −1 and relative vorticities and divergences reaching multiples of the Coriolis parameter. Typical elements of the secondary circulation of two-dimensional strain-induced frontogenesis are identified at an exemplary front in shallow water, and details of the ageostrophic flow field are revealed. The conditions for inertial and symmetric instability are evaluated for the whole domain, and the components of the tendency equation are computed in a subregion. While anticyclonic eddies are generated solely along coasts, cyclonic eddies are rolled-up streamers and found in the entire domain. A special feature of the cyclones is their ability to absorb internal waves and to sustain patches of continuous upwelling for several days, favouring plankton growth. The kinematic properties show good agreement with observations, while some observed details within a small cyclonic eddy are only partly reproduced, most likely due to a lack of horizontal resolution or nonhydrostatic effects.

14 citations


Journal ArticleDOI
23 Oct 2020-Water
TL;DR: In this paper, a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals is investigated.
Abstract: A rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates.

12 citations


Journal ArticleDOI
TL;DR: In this paper, an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification (RI) of Typhoon Rammasun was presented from the actual imagery.
Abstract: Diagnostics are presented from an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification (RI) of Typhoon Rammasun. We show that the basic difference stems from subtle differences in initializations of (a) 500−850-hPa environmental winds, and (b) midlevel moisture and ventilation. We then describe how these differences impact on the evolving convective organization, storm structure, and the timing of RI. As expected, ascent, diabatic heating and the secondary circulation near the inner-core are much stronger in the member that best forecasts the RI. The evolution of vortex cloudiness from this member is similar to the actual imagery, with the development of an inner cloud band wrapping inwards to form the eyewall. We present evidence that this structure, and hence the enhanced diabatic heating, is related to the tilt and associated dynamics of the developing inner-core in shear. For the most accurate ensemble member: (a) inhibition of ascent and a reduction in convection over the up-shear sector allow moistening of the boundary-layer air, which is transported to the down-shear sector to feed a developing convective asymmetry; (b) with minimal ventilation, undiluted clouds and moisture from the down-shear left quadrant are then wrapped inwards to the up-shear left quadrant to form the eyewall cloud; and (c) this process seems related to a critical down-shear tilt of the vortex from midlevels, and the vertical phase-locking of the circulation over up-shear quadrants. For the member that forecasts a much-delayed RI, these processes are inhibited by stronger vertical wind shear, initially resulting in poor vertical coherence of the circulation, lesser moisture and larger ventilation. Our analysis suggests that ensemble prediction is needed to account for the sensitivity of forecasts to a relatively narrow range of environmental wind shear, moisture and vortex inner-structure.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the secondary flows in the Danish straits were explored using observations and numerical simulations performed with the unstructured-grid hydrodynamic model SCHISM covering the North Sea and Baltic Sea.

10 citations


Journal ArticleDOI
TL;DR: This study successfully pioneers in demonstrating the three-dimensional structure of classical secondary circulation in actual field conditions through intensive ADCP surveys.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the authors revisited the classical Ekman transport solution for wind stress acting along the main axis of an elongated lake in steady-state conditions, and demonstrated that a secondary circulation develops and that the resulting crosswise volume transport, constrained in the closed domain, produces downwelling and upwelling that cannot be predicted by the standard Ekman formulas.

6 citations


Journal ArticleDOI
TL;DR: Using National Centers for Environmental Prediction reanalysis data for the period 28 June to 12 July during 2001 to 2013, the secondary circulation associated with the mei-yu front was quantitatively diagnosed by numerically solving a primitive version of the Sawyer-Eliassen equation as discussed by the authors.
Abstract: Using National Centers for Environmental Prediction reanalysis data for the period 28 June to 12 July during 2001 to 2013, the secondary circulation (SC) associated with the mei-yu front was quantitatively diagnosed by numerically solving a primitive version of the Sawyer-Eliassen equation. Results demonstrate that a direct SC exists near the mei-yu front zone during mid-summer and the synoptic-scale geostrophic deformations are the main factors determining SC structures. About 94% of the sinking strength and 61% of the ascending strength in the SC are induced by the geostrophic deformations. Other terms, such as diabatic heating, ageostrophic dynamical forcing, and frictional forcing, mainly influence the fine flow pattern of the SC. The forced SC produces a frontogenesis area tilting to the north with altitude. Further diagnosis clarifies the positive feedback involving the geostrophic shear forcing and vorticity frontogenesis in the upper-level mei-yu front zone. Furthermore, statistical results indicate that all 34 deep convection cases that occurred in the warm region of the meiyu front over the period 2004–2013 experienced high-level frontogenesis associated with along-jet cold advection. The cyclonic shear forcing “moved” the monsoon SC’s subsidence branch to the warm side of the mei-yu front and caused the subsidence branch to extend downwards to the lower troposphere, conducive to the initiation of deep convection in the warm region of the mei-yu front.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the authors experimentally verify the mixing performance of primary and secondary circulation flows appearing in turbulence in stirred vessels of Newtonian and viscoelastic fluids and show that a large-scale primary circulation flow of a slow rigid vortex with no small-scale turbulent eddies was observed in the viscous fluid.
Abstract: The aim of this study was to experimentally verify the mixing performance of primary and secondary circulation flows appearing in turbulence in stirred vessels of Newtonian and viscoelastic fluids. Impeller torque measurements, flow visualization, and particle image velocimetry and planar laser-induced fluorescence measurements were performed. In the case of the Newtonian fluid, a tornado-like flow that was a combination of primary and secondary circulation flows was observed with small-scale turbulent eddies. This flow required a moderate torque power and shortened the mixing time. Conversely, a large-scale primary circulation flow of a slow rigid vortex with no small-scale turbulent eddies was observed in the viscoelastic fluid. Although the discharge flow was enhanced or diminished dependently on the Reynolds number and surfactant concentration, it induced slow large-scale secondary circulation flows in the stirred vessel. As a result, the tornado-like flow disappeared, and these flows resulted in a long time constant of the mixing. Even with such flow characteristics, while the low-concentration case indicates that a low torque corresponding to the driving power is needed to drive the flow, the high-concentration case suggests that the high torque is due to the occurrence of additional viscoelastic stress.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the formation and strength of the secondary circulation and its effect on the magnitude and distribution of turbulence in a grid mixing box was examined using particle image velocimetry (PIV).
Abstract: An experimental study was conducted to examine the formation of secondary circulation in a grid-mixing box and to determine its effect on turbulence. This apparatus has been used extensively to study turbulence and mixing in a variety of geophysical contexts, and it is commonly assumed that turbulence is nearly isotropic and horizontally homogenous and that it is a zero-mean shear flow. Exceptions to these assumptions, however, have been reported, where a secondary flow pattern has been observed consisting of two roughly symmetric large-scale circulations with upward flow in the center of the box and downward return flow along the sides. These secondary flows appear to be associated with different grid oscillation conditions and box and grid geometries, and criteria have been proposed to describe conditions when secondary flow may be expected. Experiments were conducted for three different combinations of the grid oscillation stroke and frequency, while maintaining a near constant grid Reynolds number, to examine the formation and strength of the secondary flow and its effect on the magnitude and distribution of turbulence within the box. Velocity characteristics were obtained by particle image velocimetry (PIV). Results show that (1) secondary circulations were present for all combinations of the grid oscillation conditions; (2) as stroke length increased, the intensity of the secondary circulation and the contribution of these motions to total kinetic energy increased; and (3) the presence of secondary circulation results in greater overall mixing and turbulent transport in the region close to the grid. These insights are expected to be relevant to a wide range of mixing box applications.

4 citations


Journal ArticleDOI
TL;DR: In this paper, the entrainment and energetics of equal and opposite axisymmetric turbulent air plumes in a vertically confined space at a Rayleigh number were analyzed using theory and direct numerical simulation.
Abstract: We analyse the entrainment and energetics of equal and opposite axisymmetric turbulent air plumes in a vertically confined space at a Rayleigh number of using theory and direct numerical simulation. On domains of sufficiently large aspect ratio, the steady state consists of turbulent plumes penetrating an interface between two layers of approximately uniform buoyancy. As described by Baines & Turner (J. Fluid Mech., vol. 37(1), 1969, pp. 51–80), upon penetrating the interface the flow in each plume becomes forced and behaves like a constant-momentum jet, due to a reduction in its mean buoyancy relative to the local environment. To observe the behaviour of the plumes we partition the domain into sub-domains corresponding to each plume. Domains of relatively small aspect ratio produce a single primary mean-flow circulation between the sub-domains that is maintained by entrainment into the plumes. At larger aspect ratios the mean flow between the sub-domains bifurcates, indicating the existence of a secondary circulation within each layer associated with entrainment into the jets. The largest aspect ratios studied here exhibit an additional, tertiary, circulation in the vicinity of the interface. Consistency between independent calculations of an effective entrainment coefficient allows us to identify aspect ratios for which the flow can be modelled using plume theory, under the assumption of a two-layer stratification. To study the flow’s energetics we use a local definition of available potential energy (APE). For plumes with Gaussian velocity and buoyancy profiles, the theory we develop suggests that the kinetic energy dissipation is split equally between the jets and the plumes and, collectively, accounts for almost half of the input of APE at the boundaries. In contrast, 1/4 of the APE dissipation and background potential energy (BPE) production occurs in the jets, with the remaining 3/4 occurring in the plumes. These bulk theoretical predictions agree with observations of BPE production from simulations to within 1 % and form the basis of a similarity solution that models the vertical dependence of APE dissipation and BPE production. Unlike results concerning the dissipation of buoyancy variance and the strength of the circulations described above, the model for the flow’s energetics does not involve an entrainment coefficient.

Posted ContentDOI
09 Mar 2020
TL;DR: In this paper, the authors present a new theory of available energy (AE) that is based on the use of an axisymmetric vortex reference state in gradient wind balance.
Abstract: While it is well accepted that tropical cyclones (TCs) derive their energy from surface enthalpy fluxes over the ocean, there is still little understanding of the precise causes and effects by which the latter ends up as TC vortex kinetic energy. For example, Potential Intensity (PI) theory, which has been so far the main framework for predicting TC intensities, assumes a balance between the Carnot power input and the kinetic energy dissipated by surface friction, but says nothing of the detailed physical processes linking the two. A similar criticism pertains to the WISHE (Wind Induced Surface Heat Exchange) theory. To achieve a causal theory of TC intensification, the main difficulty is in linking the power input to kinetic energy production, rather than kinetic energy dissipation. Because kinetic energy is produced at the expense of available potential energy (APE), APE theory is arguably the most promising candidate framework for achieving a causal theory of TC intensification. However, in its current form, the usefulness of APE theory appears to be limited in a number of ways because of its reliance on a notional reference state of rest. First, APE production associated with standard reference states (i.e., horizontally averaged density field, density field of initial sounding, adiabatically sorted states, ...) is usually found to systematically overestimate the kinetic energy actually produced in ideal TC simulations, similarly as the Carnot theory of heat engines; moreover, the standard APE is only connected to vertical buoyancy forces, but says nothing of the radial forces required to drive the secondary circulation. To address these shortcomings, this work presents a new theory of available energy (AE) that is based on the use of an axisymmetric vortex reference state in gradient wind balance. This theory possesses the following advantages over previous frameworks: