scispace - formally typeset
Search or ask a question

Showing papers by "Alexander Tropsha published in 2019"


Journal ArticleDOI
TL;DR: The success of the computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs suggests its broad utility for designing drug delivery systems.
Abstract: Many drug candidates fail therapeutic development because of poor aqueous solubility. We have conceived a computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs. We built models predicting both drug loading efficiency (LE) and loading capacity (LC) using novel descriptors of drug-polymer complexes. These models were employed for virtual screening of drug libraries, and eight drugs predicted to have either high LE and high LC or low LE and low LC were selected. Three putative positives, as well as three putative negative hits, were confirmed experimentally (implying 75% prediction accuracy). Fortuitously, simvastatin, a putative negative hit, was found to have the desired micelle solubility. Podophyllotoxin and simvastatin (LE of 95% and 87% and LC of 43% and 41%, respectively) were among the top five polymeric micelle-soluble compounds ever studied experimentally. The success of the strategy described herein suggests its broad utility for designing drug delivery systems.

34 citations


Journal ArticleDOI
TL;DR: This work presents Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways as an abstraction layer and user interface to more easily query KGs and store, rank and explore query results.
Abstract: Summary Knowledge graphs (KGs) are quickly becoming a common-place tool for storing relationships between entities from which higher-level reasoning can be conducted. KGs are typically stored in a graph-database format, and graph-database queries can be used to answer questions of interest that have been posed by users such as biomedical researchers. For simple queries, the inclusion of direct connections in the KG and the storage and analysis of query results are straightforward; however, for complex queries, these capabilities become exponentially more challenging with each increase in complexity of the query. For instance, one relatively complex query can yield a KG with hundreds of thousands of query results. Thus, the ability to efficiently query, store, rank and explore sub-graphs of a complex KG represents a major challenge to any effort designed to exploit the use of KGs for applications in biomedical research and other domains. We present Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways as an abstraction layer and user interface to more easily query KGs and store, rank and explore query results. Availability and implementation An instance of the ROBOKOP UI for exploration of the ROBOKOP Knowledge Graph can be found at http://robokop.renci.org. The ROBOKOP Knowledge Graph can be accessed at http://robokopkg.renci.org. Code and instructions for building and deploying ROBOKOP are available under the MIT open software license from https://github.com/NCATS-Gamma/robokop. Supplementary information Supplementary data are available at Bioinformatics online.

29 citations


Journal ArticleDOI
TL;DR: The ROBOKOP Knowledge Graph Builder (KGB) is presented, which constructs the KG and provides an extensible framework to handle graph query over and integration of federated data sources.
Abstract: A proliferation of data sources has led to the notional existence of an implicit Knowledge Graph (KG) that contains vast amounts of biological knowledge contributed by distributed Application Programming Interfaces (APIs). However, challenges arise when integrating data across multiple APIs due to incompatible semantic types, identifier schemes, and data formats. We present ROBOKOP KG (http://robokopkg.renci.org), which is a KG that was initially built to support the open biomedical question-answering application, ROBOKOP (Reasoning Over Biomedical Objects linked in Knowledge-Oriented Pathways) (http://robokop.renci.org). Additionally, we present the ROBOKOP Knowledge Graph Builder (KGB), which constructs the KG and provides an extensible framework to handle graph query over and integration of federated data sources.

26 citations


Journal ArticleDOI
TL;DR: The preliminary evaluation results demonstrate a relationship between exposure to high levels of particulate matter ≤2.5 µm in diameter and the frequency of emergency department or inpatient visits for respiratory issues and validated the overall approach for openly exposing and sharing integrated clinical and environmental exposures data.

18 citations



Journal ArticleDOI
TL;DR: It is proposed that incorporating the correct IML is critical when attempting combinatorial biosynthesis of novel NRPS, and a striking relationship between IMLs and the amino acid substrates of their adjacent modules is identified.
Abstract: Motivation Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic machines that catalyze the ribosome-independent production of structurally complex small peptides, many of which have important clinical applications as antibiotics, antifungals and anti-cancer agents. Several groups have tried to expand natural product diversity by intermixing different NRPS modules to create synthetic peptides. This approach has not been as successful as anticipated, suggesting that these modules are not fully interchangeable. Results We explored whether Inter-Modular Linkers (IMLs) impact the ability of NRPS modules to communicate during the synthesis of NRPs. We developed a parser to extract 39 804 IMLs from both well annotated and putative NRPS biosynthetic gene clusters from 39 232 bacterial genomes and established the first IMLs database. We analyzed these IMLs and identified a striking relationship between IMLs and the amino acid substrates of their adjacent modules. More than 92% of the identified IMLs connect modules that activate a particular pair of substrates, suggesting that significant specificity is embedded within these sequences. We therefore propose that incorporating the correct IML is critical when attempting combinatorial biosynthesis of novel NRPS. Availability and implementation The IMLs database as well as the NRPS-Parser have been made available on the web at https://nrps-linker.unc.edu. The entire source code of the project is hosted in GitHub repository (https://github.com/SWFarag/nrps-linker). Supplementary information Supplementary data are available at Bioinformatics online.

7 citations


Journal ArticleDOI
TL;DR: A novel machine-learning model was built to relate chemical structures of synthetically accessible molecules to their prices, encoded here as the quantitative structure-price relationship (QS$R) model.
Abstract: In recent years, the field of quantitative structure–activity/property relationship (QSAR/QSPR) modeling has developed into a stable technology capable of reliably predicting new bioactive molecules. With the availability of inexpensive commercial sources of both synthetic chemicals and bioactivity assays, a cheminformatics-savvy scientist can readily establish a virtual drug discovery enterprise. A skilled computational chemist can not only develop a computer-aided drug discovery pipeline but also acquire or have the drug candidates made inexpensively for economical screening of desired on-target activity, critical off-target effects, and essential drug-likeness properties. As part of our drug discovery pipeline, a novel machine-learning model was built to relate chemical structures of synthetically accessible molecules to their prices. The model was trained from our “in stock” and “made on demand” diverse chemical entities, ranging in price from $20 to >$10,000. This novel model is encoded here as the q...

3 citations


Posted ContentDOI
06 Oct 2019-bioRxiv
TL;DR: It is proposed that XLG2, independent of guanine nucleotide binding, regulates the active state of the canonical G protein pathway directly by sequestering Gβγ and indirectly by promoting heterodimer formation.
Abstract: Plants uniquely have a family of proteins called extra-large G proteins (XLG) that share homology in their C-terminal half with the canonical G subunits; we carefully detail here that Arabidopsis XLG2 lacks critical residues requisite for nucleotide binding and hydrolysis which is consistent with our quantitative analyses. Based on microscale thermophoresis, Arabidopsis XLG2 binds GTP{gamma}S with an affinity 100-1000 times lower than that to canonical G subunits. This means that given the concentration range of guanine nucleotide in plant cells, XLG2 is not likely bound by GTP in vivo. Homology modeling and molecular dynamics simulations provide a plausible mechanism for the poor nucleotide binding affinity of XLG2. Simulations indicate substantially stronger salt bridge networks formed by several key amino-acid residues of AtGPA1 which are either misplaced or missing in XLG2. These residues in AtGPA1 not only maintain the overall shape and integrity of the apoprotein cavity but also increase the frequency of favorable nucleotide-protein interactions in the nucleotide-bound state. Despite this loss of nucleotide dependency, XLG2 binds the RGS domain of AtRGS1 with an affinity similar to the Arabidopsis AtGPA1 in its apo-state and about 2 times lower than AtGPA1 in its transition state. In addition, XLG2 binds the G{beta}{gamma} dimer with an affinity similar to that of AtGPA1. XLG2 likely acts as a dominant negative G protein to block G protein signaling. We propose that XLG2, independent of guanine nucleotide binding, regulates the active state of the canonical G protein pathway directly by sequestering G{beta}{gamma} and indirectly by promoting heterodimer formation.

2 citations