scispace - formally typeset
Search or ask a question

Showing papers by "Asha J. Dissanayake published in 2018"


Journal ArticleDOI
TL;DR: Novel fungal taxa are described in the present study, including 17 new genera, 93 new species, four combinations, a sexual record for a species and new host records for 16 species.
Abstract: This paper is the seventh in the Fungal Diversity Notes series, where 131 taxa accommodated in 28 families are mainly described from Rosa (Rosaceae) and a few other hosts. Novel fungal taxa are described in the present study, including 17 new genera, 93 new species, four combinations, a sexual record for a species and new host records for 16 species. Bhatiellae, Cycasicola, Dactylidina, Embarria, Hawksworthiana, Italica, Melanocucurbitaria, Melanodiplodia, Monoseptella, Uzbekistanica, Neoconiothyrium, Neopaucispora, Pararoussoella, Paraxylaria, Marjia, Sporormurispora and Xenomassariosphaeria are introduced as new ascomycete genera. We also introduce the new species Absidia jindoensis, Alternaria doliconidium, A. hampshirensis, Angustimassarina rosarum, Astragalicola vasilyevae, Backusella locustae, Bartalinia rosicola, Bhatiellae rosae, Broomella rosae, Castanediella camelliae, Coelodictyosporium rosarum, Comoclathris rosae, C. rosarum, Comoclathris rosigena, Coniochaeta baysunika, C. rosae, Cycasicola goaensis, Dactylidina shoemakeri, Dematiopleospora donetzica, D. rosicola, D. salsolae, Diaporthe rosae, D. rosicola, Endoconidioma rosae-hissaricae, Epicoccum rosae, Hawksworthiana clematidicola, H. lonicerae, Italica achilleae, Keissleriella phragmiticola, K. rosacearum, K. rosae, K. rosarum, Lophiostoma rosae, Marjia tianschanica, M. uzbekistanica, Melanocucurbitaria uzbekistanica, Melanodiplodia tianschanica, Monoseptella rosae, Mucor fluvius, Muriformistrickeria rosae, Murilentithecium rosae, Neoascochyta rosicola, Neoconiothyrium rosae, Neopaucispora rosaecae, Neosetophoma rosarum, N. rosae, N. rosigena, Neostagonospora artemisiae, Ophiobolus artemisiicola, Paraconiothyrium rosae, Paraphaeosphaeria rosae, P. rosicola, Pararoussoella rosarum, Parathyridaria rosae, Paraxylaria rosacearum, Penicillium acidum, P. aquaticum, Phragmocamarosporium rosae, Pleospora rosae, P. rosae-caninae, Poaceicola agrostina, P. arundinicola, P. rosae, Populocrescentia ammophilae, P. rosae, Pseudocamarosporium pteleae, P. ulmi-minoris, Pseudocercospora rosae, Pseudopithomyces rosae, Pseudostrickeria rosae, Sclerostagonospora lathyri, S. rosae, S. rosicola, Seimatosporium rosigenum, S. rosicola, Seiridium rosarum, Setoseptoria arundelensis, S. englandensis, S. lulworthcovensis, Sigarispora agrostidis, S. caryophyllacearum, S. junci, S. medicaginicola, S. rosicola, S. scrophulariae, S. thymi, Sporormurispora atraphaxidis, S. pruni, Suttonomyces rosae, Umbelopsis sinsidoensis, Uzbekistanica rosae-hissaricae, U. yakutkhanika, Wojnowicia rosicola, Xenomassariosphaeria rosae. New host records are provided for Amandinea punctata, Angustimassarina quercicola, Diaporthe rhusicola, D. eres, D. foeniculina, D. rudis, Diplodia seriata, Dothiorella iberica, Lasiodiplodia theobromae, Lecidella elaeochroma, Muriformistrickeria rubi, Neofusicoccum australe, Paraphaeosphaeria michotii, Pleurophoma pleurospora, Sigarispora caulium and Teichospora rubriostiolata. The new combinations are Dactylidina dactylidis (=Allophaeosphaeria dactylidis), Embarria clematidis (=Allophaeosphaeria clematidis), Hawksworthiana alliariae (=Dematiopleospora alliariae) and Italica luzulae (=Dematiopleospora luzulae). This study also provides some insights into the diversity of fungi on Rosa species and especially those on Rosa spines that resulted in the characterisation of eight new genera, 45 new species, and nine new host records. We also collected taxa from Rosa stems and there was 31% (20/65) overlap with taxa found on stems with that on spines. Because of the limited and non-targeted sampling for comparison with collections from spines and stems of the same host and location, it is not possible to say that the fungi on spines of Rosa differ from those on stems. The study however, does illustrate how spines are interesting substrates with high fungal biodiversity. This may be because of their hard structure resulting in slow decay and hence are suitable substrates leading to fungal colonisation. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

151 citations


Journal ArticleDOI
TL;DR: Progress in understanding the biodiversity of fungi in the region are discussed and compared with those further afield, and an astounding percentage of new taxa have been discovered.
Abstract: Fungi have been often neglected, despite the fact that they provided penicillin, lovastatin and many other important medicines. They are an understudied, but essential, fascinating and biotechnologically useful group of organisms. The study of fungi in northern Thailand has been carried out by us since 2005. These studies have been diverse, ranging from ecological aspects, phylogenetics with the incorportation of molecular dating, taxonomy (including morphology and chemotaxonomy) among a myriad of microfungi, to growing novel mushrooms, and DNA-based identification of plant pathogens. In this paper, advances in understanding the biodiversity of fungi in the region are discussed and compared with those further afield. Many new species have been inventoried for the region, but many unknown species remain to be described and/or catalogued. For example, in the edible genus Agaricus, over 35 new species have been introduced from northern Thailand, and numerous other taxa await description. In this relatively well known genus, 93% of species novelty is apparent. In the microfungi, which are relatively poorly studied, the percentage of novel species is, surprisingly, generally not as high (55–96%). As well as Thai fungi, fungi on several hosts from Europe have been also investigated. Even with the well studied European microfungi an astounding percentage of new taxa (32–76%) have been discovered. The work is just a beginning and it will be a daunting task to document this astonishingly high apparent novelty among fungi.

121 citations


Journal ArticleDOI
TL;DR: The importance of applying both culture-dependent and culture-independent approaches to study the fungal endophytic community composition in Vitis vinifera is marked, as the results related to stem are consistent for fungal community composition and richness.
Abstract: Grapevines (Vitis vinifera) are colonized by ubiquitous microorganisms known as endophytes, which may have advantageous or neutral effects without causing disease symptoms. Certain endophytes are uncultivable, so culture-independent approaches such as next generation sequencing (NGS) can help for a better understanding of their ecology and distribution. To date, there are no studies which directly link NGS results with taxa derived from a culturing approach, integrating morphological and multi-gene phylogenetic analysis of endophytes. In this study, a culture-dependent and high-resolution culture-independent approach (next generation sequencing) were used to identify endophytes in grapevine stems. In the culture-dependent approach, a total of 94 isolates were recovered from 84 of 144 healthy grapevine stem fragments (colonization rate = 58.3%). The study is unique as we used subsets of combined multi-gene regions to identify the endophytes to species level. Based on each multi-gene phylogenetic analysis, 28 species belong to 19 genera (Acremonium, Alternaria, Arthrinium, Ascorhizoctonia, Aspergillus, Aureobasidium, Bipolaris, Botryosphaeria, Botrytis, Chaetomium, Cladosporium, Curvularia, Hypoxylon, Lasiodiplodia, Mycosphaerella, Nigrospora, Penicillium, Phoma, Scopulariopsis) were identified. A higher number of culturable fungi were obtained from 13 year-old vines, followed by eight and three year-old vines. In the culture-independent approach, a fungal richness of 59 operational taxonomic units (OTU) was detected, being highest in 13 year-old grapevines, followed by eight and three years. Even though the cultivation approach detected lower fungal richness, the results related to stem are consistent for fungal community composition and richness. Comparison of the fungal taxa identified by the two approaches resulted in an overlap of 53% of the fungal genera. Due to interspecific variability of the sequences from NGS, in many cases the OTUs (even with the highly abundant ones) were only assignable to order, family or genus level. Incorporating multi-gene phylogenies we successfully identified many of the NGS derived OTUs with poor taxonomic information in reference databases to the genus or species levels. Hence, this study signifies the importance of applying both culture-dependent and culture-independent approaches to study the fungal endophytic community composition in Vitis vinifera. This principle could also be applied to other host species and ecosystem level studies.

114 citations


Journal ArticleDOI
TL;DR: Both studies reveal that the micro-fungi on Pandanaceae is particularly rich in hyphomycetes.
Abstract: This paper provides illustrated descriptions of micro-fungi newly found on Pandanaceae in China and Thailand. The fungi are accommodated in 31 families. New taxa described include a new family, seven new genera, 65 new species, 16 previously known species. A new family: Malaysiascaceae (Glomerellales). New genera are Acremoniisimulans (Plectosphaerellaceae), Pandanaceomyces, Pseudoachroiostachy (Nectriaceae), Pseudohyaloseta (Niessliaceae), Pseudoornatispora (Stachybotriaceae) and Yunnanomyces (Sympoventuriaceae). New species are Acremoniisimulans thailandensis, Beltrania krabiensis, Beltraniella pandanicola, B. thailandicus, Canalisporium krabiense, C. thailandensis, Clonostachys krabiensis, Curvularia chonburiensis, C. pandanicola, C. thailandicum, C. xishuangbannaensis, Cylindrocladiella xishuangbannaensis, Dictyochaeta pandanicola, Dictyocheirospora nabanheensis, D. pandanicola, D. xishuangbannaensis, Dictyosporium appendiculatum, Di. guttulatum, Di. hongkongensis, Di. krabiense, Di. pandanicola, Distoseptispora thailandica, D. xishuangbannaensis, Helicoma freycinetiae, Hermatomyces biconisporus, Lasiodiplodia chonburiensis, L. pandanicola, Lasionectria krabiense, Menisporopsis pandanicola, Montagnula krabiensis, Musicillium pandanicola, Neofusicoccum pandanicola, Neohelicomyces pandanicola, Neooccultibambusa thailandensis, Neopestalotiopsis chiangmaiensis, N. pandanicola, N. phangngaensis, Pandanaceomyces krabiensis, Paracylindrocarpon nabanheensis, P. pandanicola, P. xishuangbannaensis, Parasarcopodium hongkongensis, Pestalotiopsis krabiensis, P. pandanicola, Polyplosphaeria nabanheensis, P. pandanicola, P. xishuangbannaensis, Pseudoachroiostachys krabiense, Pseudoberkleasmium pandanicola, Pseudochaetosphaeronema pandanicola, Pseudohyaloseta pandanicola, Pseudoornatispora krabiense, Pseudopithomyces pandanicola, Rostriconidium pandanicola, Sirastachys phangngaensis, Stictis pandanicola, Terriera pandanicola, Thozetella pandanicola, Tubeufia freycinetiae, T. parvispora, T. pandanicola, Vermiculariopsiella hongkongensis, Volutella krabiense, V. thailandensis and Yunnanomyces pandanicola. Previous studies of micro-fungi on Pandanaceae have not included phylogenetic support. Inspiration for this study came from the book Fungi Associated with Pandanaceae by Whitton, McKenzie and Hyde in 2012. Both studies reveal that the micro-fungi on Pandanaceae is particularly rich in hyphomycetes. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

113 citations


Journal ArticleDOI
TL;DR: This set of notes introduces Phaeoseptaceae as a new family, Pseudobyssosphaeria (Melanommataceae) as anew genus, 40 new species, 11 new host or country records, one reference specimen, one new combination and provide a description of the holotype of Uleodothis balansiana (Dothideaceae).
Abstract: This is the fourth in a series of Mycosphere notes wherein we provide notes on various fungal genera. In this set of notes, we introduce Phaeoseptaceae as a new family, Pseudobyssosphaeria (Melanommataceae) as a new genus, 40 new species, 11 new host or country records, one reference specimen, one new combination and provide a description of the holotype of Uleodothis balansiana (Dothideaceae). The new species are Acrospermum longisporium (Acrospermaceae), Ascitendus aquaticus (Annulatascaceae), Ascochyta clinopodiicola (Didymellaceae), Asterina magnoliae (Asterinaceae), Barbatosphaeria aquatica (Barbatosphaeriaceae), Camarosporidiella populina (Camarosporidiellaceae), Chaetosphaeria mangrovei (Chaetosphaeriaceae), Cytospora predappioensis, Cytospora prunicola (Cytosporaceae), Dendryphiella phitsanulokensis (Dictyosporiaceae), Diaporthe subcylindrospora, Diaporthe subellipicola (Diaporthaceae), Diplodia arengae (Botryosphaeriaceae), Discosia querci (Sporocadaceae), Dyfrolomyces sinensis (Pleurotremataceae), Gliocladiopsis aquaticus (Nectriaceae), Hysterographium didymosporum (Pleosporomycetidae genera, incertae sedis), Kirschsteiniothelia phoenicis (Kirschsteiniotheliaceae), Leptogium thailandicum (Collemataceae), Lophodermium thailandicum (Rhytismataceae), Medicopsis chiangmaiensis (Neohendersoniaceae), Neocamarosporium phragmitis (Neocamarosporiaceae), Neodidymelliopsis negundinis (Didymellaceae), Neomassarina pandanicola (Sporormiaceae), Neooccultibambusa pandanicola (Occultibambusaceae), Neophaeosphaeria phragmiticola (Neophaeosphaeriaceae), Neosetophoma guiyangensis (Phaeosphaeriaceae), Neosetophoma shoemakeri (Phaeosphaeriaceae), Neosetophoma xingrensis (Phaeosphaeriaceae), Ophiocordyceps cylindrospora (Ophiocordycipitaceae), Otidea pseudoformicarum (Otideaceae), Periconia elaeidis (Periconiaceae), Phaeoisaria guttulata, Pleurotheciella krabiensis, Pleurotheciella tropica (Pleurotheciaceae), Pteridiospora bambusae (Astrosphaeriellaceae), Phaeoseptum terricola (Phaeoseptaceae), Poaceascoma taiwanense (Lentitheciaceae), Pseudobyssosphaeria bambusae (Melanommataceae) and Roussoella mangrovei (Roussoellaceae). The new host records or new country records are provided for Alfaria terrestris (Stachybotryaceae), Arthrinium phragmites (Apiosporaceae), Bertiella ellipsoidea (Melanommataceae), Brevicollum hyalosporum (Neohendersoniaceae), Byssosphaeria siamensis (Melanommataceae), Cerothallia subluteoalba (Teloschistaceae), Cryptophiale hamulata (Chaetosphaeriaceae), Didymella aliena (Didymellaceae), Epicoccum nigrum (Didymellaceae), Periconia pseudobyssoides (Periconiaceae) and Truncatella angustata (Sporocadaceae).

90 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens.
Abstract: Botryosphaeriaceae are an important fungal family that cause woody plant diseases worldwide. Recent studies have established a correlation between environmental factors and disease expression; however, less is known about factors that trigger these diseases. The current study reports on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens. Botryosphaeriaceous genomes showed an expansion of gene families associated with cell wall degradation, nutrient uptake, secondary metabolism and membrane transport, which contribute to adaptations for wood degradation. Transcriptome analysis revealed that genes involved in carbohydrate catabolism, pectin, starch and sucrose metabolism, and pentose and glucuronate interconversion pathways were induced during infection. Furthermore, genes in carbohydrate-binding modules, lysine motif domain and the glycosyl hydrolase gene families were induced by high temperature. Among these genes, overexpression of two selected putative lignocellulase genes led to increased virulence in the transformants. These results demonstrate the importance of high temperatures in opportunistic infections. This study also presents a set of Botryosphaeriaceae-specific effectors responsible for the identification of virulence-related pathogen-associated molecular patterns and demonstrates their active participation in suppressing hypersensitive responses. Together, these findings significantly expand our understanding of the determinants of pathogenicity or virulence in Botryosphaeriaceae and provide new insights for developing management strategies against them.

52 citations


Journal ArticleDOI
TL;DR: It is concluded from the evidence that it is highly undesirable to use mgDNA as holotypes in naming fungal species, and an alternative DNA-based system for naming DNA based species is proposed which would provide considerably less problems and should be adopted.
Abstract: The advantages and disadvantages of giving a valid name to a sequence of DNA detected from environmental specimens is presently a hot debate amongst the mycological community. The idea of using intracellular DNA (“mgDNA”) from environmental samples as holotypes seems at face value, to be a good idea, considering the expansion of knowledge among these ‘dark taxa’ or ‘dark matter fungi’ that it could provide (i.e. sequence based taxa without physical specimens and formal nomenclature). However, the limitations of using mgDNA as holotypes needs careful thought, i.e. can we use a short mgDNA fragment, which may contain a small amount of genetic information, to allow discrimination between species? What is the point and are the potential problems of giving valid scientific names to mgDNA? Numerous mycologists and taxonomists, who have many years of experience working on the taxonomy and phylogeny of different groups of fungi, are concerned about the consequences of providing valid names to mgDNA. There has been much debate, through several publications on the considerable problems of using mgDNA as holotypes. The proponents have tried to debate the virtues of using mgDNA as holotypes. Those against have shown that identification to species using mgDNA does not work in many fungal groups, while those for have shown cases where species can be identified with mgDNA. Different disciplines have different reasons and opinions for using mgDNA as holotypes, however even groups of the same disciplines have dissimilar ideas. In this paper we explore the use of mgDNA as holotypes. We provide evidences and opinions as to the use of mgDNA as holotypes from our own experiences. In no way do we attempt to degrade the study of DNA from environmental samples and the expansion of knowledge in to the dark taxa, but relate the issues to fungal taxonomy. In fact we show the value of using sequence data from these approaches, in dealing with the discovery of already named taxa, taxa numbers and ecological roles. We discuss the advantages and the pitfalls of using mgDNA from environmental samples as holotypes. The impacts of expanding the nomenclatural concept to allow using mgDNA from environmental samples as holotypes are also discussed. We provide evidence from case studies on Botryosphaeria, Colletotrichum, Penicillium and Xylaria. The case studies show that we cannot use mgDNA due to their short fragments and the fact that most ITS sequence data presently result from environmental sequencing. We conclude from the evidence that it is highly undesirable to use mgDNA as holotypes in naming fungal species. If this approach adopted, it would result in numerous problems where species identification cannot be confirmed due to limited sequence data available for the holotypes. We also propose an alternative DNA-based system for naming DNA based species which would provide considerably less problems and should be adopted.

51 citations


Journal ArticleDOI
TL;DR: This set of notes deals with species found on the grape genus, Vitis, one of the most important economically important crops, grown worldwide, and provides notes on 67 taxa, including two new species, Alternaria italica and Alfaria vitis.
Abstract: This is the third paper in the series, Mycosphere notes, wherein we provide notes on various fungal taxa. In this set of notes, we deal with species found on the grape genus, Vitis, one of the most important economically important crops, grown worldwide. We provide notes on 67 taxa, including two new species, Alternaria italica and Alfaria vitis, an asexual morph for Alfaria cyperiesculenti and 41 new host records or distribution records. The taxonomic placement of most taxa discussed in this study is based on a modern taxonomic framework based on analysis of multi-gene sequence data.

15 citations