scispace - formally typeset
Search or ask a question

Showing papers in "Fungal Diversity in 2018"


Journal ArticleDOI
TL;DR: An updated phylum- and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative and an example of testing evolutionary ecological hypotheses based on a global soil fungal data set is provided.
Abstract: High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum- and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.

388 citations


Journal ArticleDOI
TL;DR: Both asexual and sexual genera are merged into one outline for the phylum Ascomycota, which comprises of three subphyla viz.
Abstract: Taxonomic placement of genera have been changing rapidly as taxonomists widely use DNA sequence data in phylogenetic and evolutionary studies It is essential to update existing databases/outlines based on recent studies, since these sources are widely used as a foundation for other research In this outline, we merge both asexual and sexual genera into one outline The phylum Ascomycota comprises of three subphyla viz Pezizomycotina (including 13 classes, 124 orders and 507 families), Saccharomycotina (including one class, one order and 13 families) and Taphrinomycotina (five classes, five orders and six families) Approximately, 6600 genera have been listed under different taxonomic ranks including auxiliary (intermediate) taxonomic ranks

222 citations


Journal ArticleDOI
TL;DR: Novel fungal taxa are described in the present study, including 17 new genera, 93 new species, four combinations, a sexual record for a species and new host records for 16 species.
Abstract: This paper is the seventh in the Fungal Diversity Notes series, where 131 taxa accommodated in 28 families are mainly described from Rosa (Rosaceae) and a few other hosts. Novel fungal taxa are described in the present study, including 17 new genera, 93 new species, four combinations, a sexual record for a species and new host records for 16 species. Bhatiellae, Cycasicola, Dactylidina, Embarria, Hawksworthiana, Italica, Melanocucurbitaria, Melanodiplodia, Monoseptella, Uzbekistanica, Neoconiothyrium, Neopaucispora, Pararoussoella, Paraxylaria, Marjia, Sporormurispora and Xenomassariosphaeria are introduced as new ascomycete genera. We also introduce the new species Absidia jindoensis, Alternaria doliconidium, A. hampshirensis, Angustimassarina rosarum, Astragalicola vasilyevae, Backusella locustae, Bartalinia rosicola, Bhatiellae rosae, Broomella rosae, Castanediella camelliae, Coelodictyosporium rosarum, Comoclathris rosae, C. rosarum, Comoclathris rosigena, Coniochaeta baysunika, C. rosae, Cycasicola goaensis, Dactylidina shoemakeri, Dematiopleospora donetzica, D. rosicola, D. salsolae, Diaporthe rosae, D. rosicola, Endoconidioma rosae-hissaricae, Epicoccum rosae, Hawksworthiana clematidicola, H. lonicerae, Italica achilleae, Keissleriella phragmiticola, K. rosacearum, K. rosae, K. rosarum, Lophiostoma rosae, Marjia tianschanica, M. uzbekistanica, Melanocucurbitaria uzbekistanica, Melanodiplodia tianschanica, Monoseptella rosae, Mucor fluvius, Muriformistrickeria rosae, Murilentithecium rosae, Neoascochyta rosicola, Neoconiothyrium rosae, Neopaucispora rosaecae, Neosetophoma rosarum, N. rosae, N. rosigena, Neostagonospora artemisiae, Ophiobolus artemisiicola, Paraconiothyrium rosae, Paraphaeosphaeria rosae, P. rosicola, Pararoussoella rosarum, Parathyridaria rosae, Paraxylaria rosacearum, Penicillium acidum, P. aquaticum, Phragmocamarosporium rosae, Pleospora rosae, P. rosae-caninae, Poaceicola agrostina, P. arundinicola, P. rosae, Populocrescentia ammophilae, P. rosae, Pseudocamarosporium pteleae, P. ulmi-minoris, Pseudocercospora rosae, Pseudopithomyces rosae, Pseudostrickeria rosae, Sclerostagonospora lathyri, S. rosae, S. rosicola, Seimatosporium rosigenum, S. rosicola, Seiridium rosarum, Setoseptoria arundelensis, S. englandensis, S. lulworthcovensis, Sigarispora agrostidis, S. caryophyllacearum, S. junci, S. medicaginicola, S. rosicola, S. scrophulariae, S. thymi, Sporormurispora atraphaxidis, S. pruni, Suttonomyces rosae, Umbelopsis sinsidoensis, Uzbekistanica rosae-hissaricae, U. yakutkhanika, Wojnowicia rosicola, Xenomassariosphaeria rosae. New host records are provided for Amandinea punctata, Angustimassarina quercicola, Diaporthe rhusicola, D. eres, D. foeniculina, D. rudis, Diplodia seriata, Dothiorella iberica, Lasiodiplodia theobromae, Lecidella elaeochroma, Muriformistrickeria rubi, Neofusicoccum australe, Paraphaeosphaeria michotii, Pleurophoma pleurospora, Sigarispora caulium and Teichospora rubriostiolata. The new combinations are Dactylidina dactylidis (=Allophaeosphaeria dactylidis), Embarria clematidis (=Allophaeosphaeria clematidis), Hawksworthiana alliariae (=Dematiopleospora alliariae) and Italica luzulae (=Dematiopleospora luzulae). This study also provides some insights into the diversity of fungi on Rosa species and especially those on Rosa spines that resulted in the characterisation of eight new genera, 45 new species, and nine new host records. We also collected taxa from Rosa stems and there was 31% (20/65) overlap with taxa found on stems with that on spines. Because of the limited and non-targeted sampling for comparison with collections from spines and stems of the same host and location, it is not possible to say that the fungi on spines of Rosa differ from those on stems. The study however, does illustrate how spines are interesting substrates with high fungal biodiversity. This may be because of their hard structure resulting in slow decay and hence are suitable substrates leading to fungal colonisation. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

151 citations


Journal ArticleDOI
TL;DR: Progress in understanding the biodiversity of fungi in the region are discussed and compared with those further afield, and an astounding percentage of new taxa have been discovered.
Abstract: Fungi have been often neglected, despite the fact that they provided penicillin, lovastatin and many other important medicines. They are an understudied, but essential, fascinating and biotechnologically useful group of organisms. The study of fungi in northern Thailand has been carried out by us since 2005. These studies have been diverse, ranging from ecological aspects, phylogenetics with the incorportation of molecular dating, taxonomy (including morphology and chemotaxonomy) among a myriad of microfungi, to growing novel mushrooms, and DNA-based identification of plant pathogens. In this paper, advances in understanding the biodiversity of fungi in the region are discussed and compared with those further afield. Many new species have been inventoried for the region, but many unknown species remain to be described and/or catalogued. For example, in the edible genus Agaricus, over 35 new species have been introduced from northern Thailand, and numerous other taxa await description. In this relatively well known genus, 93% of species novelty is apparent. In the microfungi, which are relatively poorly studied, the percentage of novel species is, surprisingly, generally not as high (55–96%). As well as Thai fungi, fungi on several hosts from Europe have been also investigated. Even with the well studied European microfungi an astounding percentage of new taxa (32–76%) have been discovered. The work is just a beginning and it will be a daunting task to document this astonishingly high apparent novelty among fungi.

121 citations


Journal ArticleDOI
TL;DR: The importance of applying both culture-dependent and culture-independent approaches to study the fungal endophytic community composition in Vitis vinifera is marked, as the results related to stem are consistent for fungal community composition and richness.
Abstract: Grapevines (Vitis vinifera) are colonized by ubiquitous microorganisms known as endophytes, which may have advantageous or neutral effects without causing disease symptoms. Certain endophytes are uncultivable, so culture-independent approaches such as next generation sequencing (NGS) can help for a better understanding of their ecology and distribution. To date, there are no studies which directly link NGS results with taxa derived from a culturing approach, integrating morphological and multi-gene phylogenetic analysis of endophytes. In this study, a culture-dependent and high-resolution culture-independent approach (next generation sequencing) were used to identify endophytes in grapevine stems. In the culture-dependent approach, a total of 94 isolates were recovered from 84 of 144 healthy grapevine stem fragments (colonization rate = 58.3%). The study is unique as we used subsets of combined multi-gene regions to identify the endophytes to species level. Based on each multi-gene phylogenetic analysis, 28 species belong to 19 genera (Acremonium, Alternaria, Arthrinium, Ascorhizoctonia, Aspergillus, Aureobasidium, Bipolaris, Botryosphaeria, Botrytis, Chaetomium, Cladosporium, Curvularia, Hypoxylon, Lasiodiplodia, Mycosphaerella, Nigrospora, Penicillium, Phoma, Scopulariopsis) were identified. A higher number of culturable fungi were obtained from 13 year-old vines, followed by eight and three year-old vines. In the culture-independent approach, a fungal richness of 59 operational taxonomic units (OTU) was detected, being highest in 13 year-old grapevines, followed by eight and three years. Even though the cultivation approach detected lower fungal richness, the results related to stem are consistent for fungal community composition and richness. Comparison of the fungal taxa identified by the two approaches resulted in an overlap of 53% of the fungal genera. Due to interspecific variability of the sequences from NGS, in many cases the OTUs (even with the highly abundant ones) were only assignable to order, family or genus level. Incorporating multi-gene phylogenies we successfully identified many of the NGS derived OTUs with poor taxonomic information in reference databases to the genus or species levels. Hence, this study signifies the importance of applying both culture-dependent and culture-independent approaches to study the fungal endophytic community composition in Vitis vinifera. This principle could also be applied to other host species and ecosystem level studies.

114 citations


Journal ArticleDOI
TL;DR: Both studies reveal that the micro-fungi on Pandanaceae is particularly rich in hyphomycetes.
Abstract: This paper provides illustrated descriptions of micro-fungi newly found on Pandanaceae in China and Thailand. The fungi are accommodated in 31 families. New taxa described include a new family, seven new genera, 65 new species, 16 previously known species. A new family: Malaysiascaceae (Glomerellales). New genera are Acremoniisimulans (Plectosphaerellaceae), Pandanaceomyces, Pseudoachroiostachy (Nectriaceae), Pseudohyaloseta (Niessliaceae), Pseudoornatispora (Stachybotriaceae) and Yunnanomyces (Sympoventuriaceae). New species are Acremoniisimulans thailandensis, Beltrania krabiensis, Beltraniella pandanicola, B. thailandicus, Canalisporium krabiense, C. thailandensis, Clonostachys krabiensis, Curvularia chonburiensis, C. pandanicola, C. thailandicum, C. xishuangbannaensis, Cylindrocladiella xishuangbannaensis, Dictyochaeta pandanicola, Dictyocheirospora nabanheensis, D. pandanicola, D. xishuangbannaensis, Dictyosporium appendiculatum, Di. guttulatum, Di. hongkongensis, Di. krabiense, Di. pandanicola, Distoseptispora thailandica, D. xishuangbannaensis, Helicoma freycinetiae, Hermatomyces biconisporus, Lasiodiplodia chonburiensis, L. pandanicola, Lasionectria krabiense, Menisporopsis pandanicola, Montagnula krabiensis, Musicillium pandanicola, Neofusicoccum pandanicola, Neohelicomyces pandanicola, Neooccultibambusa thailandensis, Neopestalotiopsis chiangmaiensis, N. pandanicola, N. phangngaensis, Pandanaceomyces krabiensis, Paracylindrocarpon nabanheensis, P. pandanicola, P. xishuangbannaensis, Parasarcopodium hongkongensis, Pestalotiopsis krabiensis, P. pandanicola, Polyplosphaeria nabanheensis, P. pandanicola, P. xishuangbannaensis, Pseudoachroiostachys krabiense, Pseudoberkleasmium pandanicola, Pseudochaetosphaeronema pandanicola, Pseudohyaloseta pandanicola, Pseudoornatispora krabiense, Pseudopithomyces pandanicola, Rostriconidium pandanicola, Sirastachys phangngaensis, Stictis pandanicola, Terriera pandanicola, Thozetella pandanicola, Tubeufia freycinetiae, T. parvispora, T. pandanicola, Vermiculariopsiella hongkongensis, Volutella krabiense, V. thailandensis and Yunnanomyces pandanicola. Previous studies of micro-fungi on Pandanaceae have not included phylogenetic support. Inspiration for this study came from the book Fungi Associated with Pandanaceae by Whitton, McKenzie and Hyde in 2012. Both studies reveal that the micro-fungi on Pandanaceae is particularly rich in hyphomycetes. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

113 citations


Journal ArticleDOI
TL;DR: This study compares traditional and high-resolution culture-independent approaches using the same set of samples to study the saprotrophic fungi on Vitis vinifera, which support previous observations, that dead plant material in grape vineyards can be the primary sources of disease.
Abstract: This study is unique as it compares traditional and high-resolution culture-independent approaches using the same set of samples to study the saprotrophic fungi on Vitis vinifera. We identified the saprotrophic communities of table grape (Red Globe) and wine grape (Carbanate Gernischet) in China using both traditional and culture-independent techniques. The traditional approach used direct observations based on morphology, single spore isolation and phylogenetic analysis yielding 45 taxa which 19 were commonly detected in both cultivars. The same set of samples were then used for Illumina sequencing which analyzed ITS1 sequence data and detected 226 fungal OTUs, of which 176 and 189 belong to the cultivars Carbanate Gernischet and Red Globe, respectively. There were 139 OTUs shared between the two V. vinifera cultivars and 37 and 50 OTUs were specific to Carbanate Gernischet and Red Globe cultivars respectively. In the Carbanate Gernischet cultivar, Ascomycota accounted for 77% of the OTUs and in Red Globe, almost all sequenced were Ascomycota. The fungal taxa overlap at the genus and species level between the traditional and culture-independent approach was relatively low. In the traditional approach we were able to identify the taxa to species level, while in the culture-independent method we were frequently able to identify the taxa to family or genus level. This is remarkable as we used the same set of samples collected in China for both approaches. We recommend the use of traditional techniques to accurately identify taxa. Culture-independent method can be used to get a better understanding about the organisms that are present in a host in its natural environment. We identified primary and secondary plant pathogens and endophytes in the saprotrophic fungal communities, which support previous observations, that dead plant material in grape vineyards can be the primary sources of disease. Finally, based on present and previous findings, we provide a worldwide checklist of 905 fungal taxa on Vitis species, which includes their mode of life and distribution.

92 citations


Journal ArticleDOI
TL;DR: 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data.
Abstract: Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1–20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced.

84 citations


Journal ArticleDOI
TL;DR: This study revised the families Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae in Xylariales, based on DNA sequence data derived from living cultures of fresh isolates, data from GenBank and morphological observation of type and worldwide herbarium specimens.
Abstract: Species and generic recognition in the order Xylariales has been uncertain due to lack of molecular data from authentic cultures, as well as overlapping morphological characteristics. In this study, we revise the families Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae in Xylariales. Our study is based on DNA sequence data derived from living cultures of fresh isolates, data from GenBank and morphological observation of type and worldwide herbarium specimens. We also collected new specimens from Germany, Italy and Thailand. Combined analyses of ITS, LSU, RPB2 and β-tubulin sequence data were used to reconstruct the molecular phylogeny of the above families. Generic and familiar boundaries between these families are revised and presented in an updated combined phylogenetic tree. We accept six genera in Graphostromataceae, 19 genera in Hypoxylaceae, four in Lopadostomataceae and 37 genera in Xylariaceae. Five genera previously treated in Xylariaceae are placed in Amphisphaeriales genera incertae sedis and seven genera are placed in Xylariales genera incertae sedis. Two genera are placed in Sordariomycetes genera incertae sedis, while four genera are placed as Xylariomycetidae genera incertae sedis. Three genera are considered as doubtful. Barrmaelia and Cannonia, presently included in Xylariaceae are transferred to Diatrypaceae and Coniochaetales respectively, based on their morphology and phylogeny. Areolospora and Myconeesia are excluded from Xylariaceae and synonymized with Phaeosporis and Anthostomella respectively. Updated descriptions and illustrations are provided for all taxa with notes provided on each genus. Excluded and doubtful genera are listed with notes on their taxonomy and phylogeny. Taxonomic keys are provided for all revised families with morphological details for genera within the families.

80 citations


Journal ArticleDOI
TL;DR: Although the world’s top ten most feared fungi are targeted, numerous others are causing serious concern to human health, plant production, forestry, other animals and the authors' factories and dwellings.
Abstract: An account is provided of the world’s ten most feared fungi. Within areas of interest, we have organized the entries in the order of concern. We put four human pathogens first as this is of concern to most people. This is followed by fungi producing mycotoxins that are highly harmful for humans; Aspergillus flavus, the main producer of aflatoxins, was used as an example. Problems due to indoor air fungi may also directly affect our health and we use Stachybotrys chartarum as an example. Not everyone collects and eats edible mushrooms. However, fatalities caused by mushroom intoxications often make news headlines and therefore we include one of the most poisonous of all mushrooms, Amanita phalloides, as an example. We then move on to the fungi that damage our dwellings causing serious anxiety by rotting our timber structures and flooring. Serpula lacrymans, which causes dry rot is an excellent example. The next example serves to represent all plant and forest pathogens. Here we chose Austropuccinia psidii as it is causing devastating effects in Australia and will probably do likewise in New Zealand. Finally, we chose an important amphibian pathogen which is causing serious declines in the numbers of frogs and other amphibians worldwide. Although we target the top ten most feared fungi, numerous others are causing serious concern to human health, plant production, forestry, other animals and our factories and dwellings. By highlighting ten feared fungi as an example, we aim to promote public awareness of the cost and importance of fungi.

77 citations


Journal ArticleDOI
TL;DR: One-hundred and sixty-two species of Amanitaceae known from China are treated in this study, including 50 novel species and 112 known taxa, and it is clear that Catatrama is closely related to Limacella, however, the phylogenetic relationships among these genera remain largely unresolved.
Abstract: Mushrooms in the basidiomycete family Amanitaceae are very important both economically and ecologically. However, the delimitation of the family is still controversial, in part due to limited taxon sampling and in part because of insufficient gene fragment employed for molecular phylogenetic analyses. Furthermore, species diversity in the family is likely to have been largely underestimated, due to morphological similarity between taxa and phenotypic plasticity. In this study, we examined 1190 collections, including 1008 Chinese and 182 external ones, and performed the first comprehensive phylogenetic analyses of Amanitaceae using multi-locus sequence data. To test the monophyly of the Amanitaceae, a concatenated (nrLSU, rpb1, and rpb2) dataset of 200 taxa of the order Agaricales was analyzed. To infer the phylogeny of Amanitaceae, a concatenated nrLSU, tef1-α, rpb2 and β-tubulin dataset (3010 sequences from ca. 890 samples with 2309 newly generated sequences) was used. In this dataset, 252 sequences from the types of 77 species were provided. Our results indicate that Amanitaceae is a monophyletic group, and consists of five genera, namely Amanita, Catatrama, Limacella, Limacellopsis and Myxoderma. It is clear that Catatrama is closely related to Limacella, however, the phylogenetic relationships among these genera remain largely unresolved. Amanita contains 95% of the species in the family, and is here divided into three subgenera and eleven sections (subgen. Amanita, containing: sect. Amanita, sect. Amarrendiae, sect. Caesareae and sect. Vaginatae; subgen. Amanitina, containing: sect. Amidella, sect. Arenariae, sect. Phalloideae, sect. Roanokenses, sect. Strobiliformes and sect. Validae; and subgen. Lepidella, containing sect. Lepidella). Subgen. Lepidella occupies the basal position in the genus. One-hundred and sixty-two species of Amanitaceae known from China are treated in this study, including 50 novel species and 112 known taxa. Amanita gleocystidiosa, A. pyriformis, A. atrofusca, A. subjunquillea var. alba and A. areolata are treated as synonyms of A. sychnopyramis f. subannulata, A. orientigemmata, A. umbrinolutea, A. subjunquillea and A. zangii, respectively. 26 extralimital taxa including a novel species, namely Catatrama indica, were included in our study to allow us to make comparisons between these and the Chinese taxa. DNA sequence data for all the species of Amanitaceae in China and keys for identification of the species are provided.

Journal ArticleDOI
TL;DR: The link between polyextremotolerance and opportunistic pathogenicity is shown in a kingdom-wide phylogenetic analysis as a statistically significant co-occurrence of extremotolerance (e.g. osmot tolerance and psychrotolerance) and opportunism at the level of fungal orders.
Abstract: Numerous agents of infections in humans and other mammals are found among fungi that are able to survive extreme environmental conditions and to quickly adapt to novel habitats. Nevertheless, the relationship between opportunistic potential and polyextremotolerance was not yet studied systematically in fungi. Here, the link between polyextremotolerance and opportunistic pathogenicity is shown in a kingdom-wide phylogenetic analysis as a statistically significant co-occurrence of extremotolerance (e.g. osmotolerance and psychrotolerance) and opportunism at the level of fungal orders. In addition to extremotolerance, fungal opportunists share another characteristic—an apparent lack of specialised virulence traits. This is illustrated by a comparative genomic analysis of 20 dothideomycetous and eurotiomycetous black fungi. While the genomes of specialised fungal plant pathogens were significantly enriched in known virulence-associated genes that encode secreted proteases, carbohydrate active enzyme families, polyketide synthases, and non-ribosomal peptide synthetases, no such signatures were observed in human opportunists. Together the presented results have several implications. If infection of human hosts is a side effect of fungal stress tolerance and adaptability, the human body is most likely neither the preferred habitat of such species, nor important for their evolutionary success. This defines opportunism as opposed to pathogenicity, where infection is advantageous for the species’ fitness. Since opportunists are generally incapable of the host-to-host transmission, any host-specific adaptations are likely to be lost with the resolution of the infection, explaining the observed lack of specialised virulence traits. In this scenario opportunistic infections should be seen as an evolutionary dead end and unlikely to lead to true pathogenicity.

Journal ArticleDOI
TL;DR: Composition of the aboveground microbiome appears to be closely connected to the process of litter decomposition, and the respective linked fungal habitat will facilitate predicting nutrient and carbon cycling and storage in forest ecosystems as well as elucidating the ecology of leaf microbiomes.
Abstract: The ecological significance of fungi occurring asymptomatically inside living plant leaves is poorly understood. Given the broad saprotrophic potential of many endophytic fungi, we hypothesized that they persist in decaying litter for an extended period of time after leaf abscission. Fungal assemblages were assessed by high-throughput sequencing in autumn leaves of beech (Fagus sylvatica) and in the corresponding leaf litter in 388 samples from 22 beech forest plots in three widely distant regions of Germany. A considerable proportion of the leaf-endophytic fungi was also found in 1-year-old litter. Co-occurrence networks revealed that the fungi formed unstructured assemblages inside the living leaves, rather than well-structured communities. Previously endophytic fungi constituted an integral part of the fungal litter community and were by far the most active fungi in 1-year-old litter. We therefore consider these endophytic occurrences to represent transient stages. Composition of the aboveground microbiome appears therefore to be closely connected to the process of litter decomposition. Considering the respective linked fungal habitat will facilitate predicting nutrient and carbon cycling and storage in forest ecosystems as well as elucidating the ecology of leaf microbiomes.

Journal ArticleDOI
TL;DR: This study obtained the type specimens or other authentic specimens of diaporthalean taxa from worldwide fungaria, and based on morphological characters from type or authentic specimens, details from protologue and original illustrations and molecular data obtained from GenBank, accepts 27 families and 138 genera within Diaporthales, and places Tirisporellaceae and one genus in Xylariomycetidae genera incertae sedis.
Abstract: Demarcation of family, genus and species boundaries in the Diaporthales has been tentative due to uninformative illustrations and descriptions, overlapping morphological characteristics, misplacement or poor condition of type specimens and shortage of molecular data from ex-type cultures. In this study, we obtained the type specimens or other authentic specimens of diaporthalean taxa from worldwide fungaria. We examined, described and illustrated them. This study is based on morphological characters from type or authentic specimens, details from protologue and original illustrations and molecular data obtained from GenBank. Combined analyses of nrITS, nrLSU, RPB2 and TEF1-α sequence data were used to construct the molecular phylogeny. Additionally, we provided separate phylogenetic trees for families when necessary to show the generic distribution within these families based on suitable gene markers. Based on morphology and phylogeny, we treat 17 genera previously assigned to Diaporthales genera incertae sedis within several families. For some genera we have designated new generic types as they are lacking type species or type species have affiliations with other families. We exclude Anisomycopsis from Diaporthales and place it in Xylariomycetidae genera incertae sedis. Tirisporellaceae, which was previously placed in Tirisporellales is placed in Diaporthales based on phylogeny and morphology. A new combination, Dendrostoma leiphaemia propose for Amphiporthe leiphaemia (Fr.) Butin. Based on the morphological characters and molecular data we accept 27 families and 138 genera within Diaporthales, 24 genera in Diaporthales genera incertae sedis and one genus in Xylariomycetidae genera incertae sedis. We provide notes for genera in Diaporthales genera incertae sedis, and excluded and doubtful genera are listed with notes on their taxonomy and phylogeny.

Journal ArticleDOI
TL;DR: To better understand the thermal dimorphism among these fungi, the dynamic process of transformation from mycelial to yeast-like or adiaspore-like forms was assessed over a range of temperatures and molecular data resolved the relationships and recognized five major well-supported lineages that correspond largely to the genus level.
Abstract: The family Ajellomycetaceae (Onygenales) includes mammal-associated pathogens within the genera Blastomyces, Emmonsia, Histoplasma and Paracoccidioides, as well as the recently described genera, Emergomyces that causes disease in immunocompromised hosts, and Emmonsiellopsis, known only from soil. To further assess the phylogenetic relationships among and between members of these genera and several previously undescribed species, we sequenced and analyzed the DNA-directed RNA polymerase II (rPB2), translation elongation factor 3-α (TEF3), β-tubulin (TUB2), 28S large subunit rDNA (LSU) and the internal transcribed spacer regions (ITS) in 68 strains, in addition to morphological and physiological investigations. To better understand the thermal dimorphism among these fungi, the dynamic process of transformation from mycelial to yeast-like or adiaspore-like forms was also assessed over a range of temperatures (6–42 °C). Molecular data resolved the relationships and recognized five major well-supported lineages that correspond largely to the genus level. Emmonsia, typified by Emmonsia parva, is a synonym of Blastomyces that also accommodates Blastomyces helicus (formerly Emmonsia helica). Emmonsia crescens is phylogenetically distinct, and found closely related to a single strain from soil without known etiology. Blastomyces silverae, Emergomyces canadensis, Emergomyces europaeus and Emmonsia sola are newly described. Almost all of the taxa are associated with human and animal disease. Emmonsia crescens, B. dermatitidis and B. parvus are prevalently associated with pulmonary disease in humans or animals. Blastomyces helicus, B. percursus, Emergomyces africanus, Es. canadensis, Es. europaeus, Es. orientalis and Es. pasteurianus (formerly Emmonsia pasteuriana) are predominantly found in human hosts with immune disorders; no animal hosts are known for these species except B. helicus.

Journal ArticleDOI
TL;DR: It is concluded from the evidence that it is highly undesirable to use mgDNA as holotypes in naming fungal species, and an alternative DNA-based system for naming DNA based species is proposed which would provide considerably less problems and should be adopted.
Abstract: The advantages and disadvantages of giving a valid name to a sequence of DNA detected from environmental specimens is presently a hot debate amongst the mycological community. The idea of using intracellular DNA (“mgDNA”) from environmental samples as holotypes seems at face value, to be a good idea, considering the expansion of knowledge among these ‘dark taxa’ or ‘dark matter fungi’ that it could provide (i.e. sequence based taxa without physical specimens and formal nomenclature). However, the limitations of using mgDNA as holotypes needs careful thought, i.e. can we use a short mgDNA fragment, which may contain a small amount of genetic information, to allow discrimination between species? What is the point and are the potential problems of giving valid scientific names to mgDNA? Numerous mycologists and taxonomists, who have many years of experience working on the taxonomy and phylogeny of different groups of fungi, are concerned about the consequences of providing valid names to mgDNA. There has been much debate, through several publications on the considerable problems of using mgDNA as holotypes. The proponents have tried to debate the virtues of using mgDNA as holotypes. Those against have shown that identification to species using mgDNA does not work in many fungal groups, while those for have shown cases where species can be identified with mgDNA. Different disciplines have different reasons and opinions for using mgDNA as holotypes, however even groups of the same disciplines have dissimilar ideas. In this paper we explore the use of mgDNA as holotypes. We provide evidences and opinions as to the use of mgDNA as holotypes from our own experiences. In no way do we attempt to degrade the study of DNA from environmental samples and the expansion of knowledge in to the dark taxa, but relate the issues to fungal taxonomy. In fact we show the value of using sequence data from these approaches, in dealing with the discovery of already named taxa, taxa numbers and ecological roles. We discuss the advantages and the pitfalls of using mgDNA from environmental samples as holotypes. The impacts of expanding the nomenclatural concept to allow using mgDNA from environmental samples as holotypes are also discussed. We provide evidence from case studies on Botryosphaeria, Colletotrichum, Penicillium and Xylaria. The case studies show that we cannot use mgDNA due to their short fragments and the fact that most ITS sequence data presently result from environmental sequencing. We conclude from the evidence that it is highly undesirable to use mgDNA as holotypes in naming fungal species. If this approach adopted, it would result in numerous problems where species identification cannot be confirmed due to limited sequence data available for the holotypes. We also propose an alternative DNA-based system for naming DNA based species which would provide considerably less problems and should be adopted.

Journal ArticleDOI
TL;DR: The shift from plectenchymatic to pseudoparenchymatic ECM outer mantle structures happened most likely already in the paleotropics, and is here hypothesized to have facilitated a major diversification of the genus with new hosts in the northern hemisphere.
Abstract: For the very first time, morpho-anatomical features of both fruiting bodies as well as below-ground structures have been confronted with a newly produced multigene phylogeny of root symbiotic basidiomycetes using one of the most speciose genera of ectomycorrhizal fungi (Russula, Russulales) as an example. In this first of two papers, the authors focus more specifically on below-ground structures. Our five-gene phylogeny divides the genus in five main clades, here interpreted as representing seven subgenera, all significantly supported. Although more conserved than features of fruiting bodies, the anatomy of ectomycorrhiza does not allow for an unambiguous characterization of the main clades resolved by phylogenetic analysis, but the anatomy of ectomycorrhiza performs better to naturally classify the species of this genus. Features of fruiting bodies remain much more adequate for the delimitation of terminal clades and are irreplaceable for morphological species identification. Tropical taxa mostly nest in ancient lineages, but are also present in some terminal clades of otherwise temperate species groups. The shift from plectenchymatic to pseudoparenchymatic ECM outer mantle structures happened most likely already in the paleotropics, and is here hypothesized to have facilitated a major diversification of the genus with new hosts in the northern hemisphere. Available data as well as our own observations on below ground structures of several Lactifluus species suggests that this genus shares with Russula the absence of lactifers in ECM mantles and rhizomorphs, contrary to species of Lactarius where lactifers are always present. First observations on rhizomorphs of species in Multifurca confirm the presence of vessel-like and ladder-like hyphae, also found in the other agarioid genera of this family, while distinct lactifers are only present in the lactarioid, but not in russuloid members of this genus.

Journal ArticleDOI
TL;DR: Based on a rarefaction analysis, the currently available ITS1 sequences represent nearly all the major species of gut anaerobic fungi, but much more sequencing effort is needed to assess the actual richness of minor OTUs.
Abstract: Obligate anaerobic fungi of the phylum Neocallimastigomycota play a key role in digesting fibrous feeds in the gut of herbivores, but little is known about their global diversity. In this study, the collective diversity of gut anaerobic fungi was examined using all curated internal transcribed spacer 1 (ITS1) sequences of anaerobic gut fungi available in GenBank. The 262,770 quality-checked fungal ITS1 sequences downloaded from GenBank were assigned to 274 operational taxonomic units (OTUs) at the approximate species level. Of these approximate species-equivalent (Sp-eq) OTUs, 119 were represented by at least five ITS1 sequences, with 38 containing known species and 81 containing no known species. Based on a rarefaction analysis, the currently available ITS1 sequences represent nearly all the major species of gut anaerobic fungi, but much more sequencing effort is needed to assess the actual richness of minor OTUs. One dataset of ITS1 reference sequences (referred to as AF-RefSeq) and one comprehensive taxonomic framework are also presented, and they are shown to be suitable for taxonomic classification of most of the ITS1 sequences in GenBank. The results of the present study may help guide future studies involving taxonomic and phylogenetic analysis of ITS1 sequences of anaerobic fungi and targeted isolation and characterization of new anaerobic fungi.

Journal ArticleDOI
TL;DR: This study deals with an extensive taxonomic reevaluation focusing on phylogenetic relationships and morphological characterization of Tubeufiales, especially those helicosporous hyphomycetes which are difficult to identify.
Abstract: This study deals with an extensive taxonomic reevaluation focusing on phylogenetic relationships and morphological characterization of Tubeufiales, especially those helicosporous hyphomycetes which are difficult to identify. Based on evidence from DNA sequence data and morphology, we introduce 13 new genera in the family Tubeufiaceae, viz. Acanthotubeufia, Dematiohelicoma, Dematiohelicomyces, Dematiohelicosporum, Dematiotubeufia, Helicoarctatus, Helicohyalinum, Helicotruncatum, Neochlamydotubeufia, Neohelicoma, Pleurohelicosporium, Pseudohelicomyces and Pseudohelicoon; transfer Chaetosphaerulina from Dothideomycetes genera incertae sedis, and Artocarpomyces and Helicodochium from Ascomycetes genera incertae sedis into Tubeufiaceae; introduce 52 new species, viz. Berkleasmium fusiforme, B. longisporum, Chlamydotubeufia cylindrica, Dematiohelicosporum guttulatum, Helicoarctatus aquaticus, Helicodochium aquaticum, Helicohyalinum infundibulum, Helicoma aquaticum, H. brunneisporum, H. cocois, H. rufum, H. fusiforme, H. longisporum, H. multiseptatum, H. rubriappendiculatum, H. septoconstrictum, H. tectonae, Helicomyces hyalosporus, Helicosporium aquaticum, H. flavisporum, H. setiferum, H. vesicarium, H. viridiflavum, Neochlamydotubeufia fusiformis, Neohelicomyces hyalosporus, Neohelicosporium acrogenisporum, N. astrictum, N. ellipsoideum, N. irregulare, N. krabiense, N. laxisporum, N. ovoideum, Pleurohelicosporium parvisporum, Pseudohelicomyces aquaticus, P. hyalosporus, Tubeufia abundata, T. bambusicola, T. brevis, T. brunnea, T. chlamydospora, T. dictyospora, T. eccentrica, T. fangchengensis, T. hechiensis, T. inaequalis, T. krabiensis, T. rubra, T. sessilis, T. sympodihylospora, T. sympodilaxispora, T. taiwanensis and T. tratensis; provide 43 new combinations, viz. Acanthohelicospora guianensis, Acanthotubeufia filiforme, Berkleasmium aquatica, B. guangxiense, B. latisporum, B. thailandicum, Dematiohelicoma perelegans, D. pulchrum, Dematiohelicomyces helicosporus, Dematiotubeufia chiangraiensis, Helicohyalinum aquaticum, Helicoma elinorae, H. gigasporum, H. hongkongense, H. linderi, H. nematosporum, H. pannosum, H. serpentinum, Helicomyces chiayiensis, Helicotruncatum palmigenum, Neochlamydotubeufia khunkornensis, Neohelicoma fagacearum, Neohelicomyces pallidus, Neohelicosporium abuense, N. aurantiellum, N. griseum, N. morganii, N. myrtacearum, N. nizamabadense, N. sympodiophorum, N. taiwanense, N. vesiculiferum, Pseudohelicomyces indicus, P. paludosus, P. talbotii, Pseudohelicoon gigantisporum, P. subglobosum, Tubeufia dentophora, T. geniculata, T. lilliputea, T. machaerinae, T. sympodiophora and T. xylophila; introduce 16 new records, viz. Dictyospora thailandica, Helicomyces colligatus, H. torquatus, Neohelicosporium guangxiense, N. hyalosporum, N. parvisporum, Thaxteriellopsis lignicola, Tubeufia aquatica, T. chiangmaiensis, T. cylindrothecia, T. filiformis, T. guangxiensis, T. laxispora, T. parvispora, T. roseohelicospora and T. tectonae. The taxonomy of Helicoma, Helicomyces and Helicosporium is revisited based on phylogenetic analyses and morphological evidence. Neorhamphoria is transferred to Bezerromycetaceae. Three species are excluded from the genus Chlamydotubeufia, twelve species from Helicoma, four species from Helicomyces, 25 species from Helicosporium, six species from Neoacanthostigma and one species from Tubeufia. A multi-gene phylogenetic tree based on maximum likelihood and Bayesian analyses of ITS, LSU, RPB2 and TEF1α sequence data of species of Tubeufiales is provided. Detailed descriptions and illustrations are provided, as well as the morphological comparison with similar taxa are explored. The checklist of accepted Tubeufiales species and re-organised Tubeufiales species are provided.

Journal ArticleDOI
TL;DR: This paper reviews 21 families of Pezizomycetes including five new families, which are introduced here, viz.
Abstract: The class Pezizomycetes is monophyletic within the subdivision Pezizomycotina. The main distinguishing character of this class is operculate asci, although in some taxa this character has been lost. The circumscription of the families and generic level delimitation in Pezizomycetes is still controversial, although several molecular phylogenetic studies have been published on this group. This paper reviews 21 families of Pezizomycetes including five new families, which are introduced here, viz. Kallistoskyphaceae, Pseudombrophilaceae, Pulvinulaceae, Strobiloscyphaceae and Tarzettaceae. Moreover, this study provides a modified backbone tree based on phylogenetic analysis of five combined loci. Descriptions and illustrations of representative taxa for the families are provided from collections made in China, Thailand and the UK, herbarium material from international herbaria (FH, FLAS, H, HKAS and MA) and the literature. Pezizales separates into six major clades. Clade 1 of Pezizales includes the families Ascobolaceae and Pezizaceae. Clade 2 is the new family Kallistoskyphaceae. Clade 3 comprises the families Caloscyphaceae, Karstenellaceae and Rhizinaceae. Clade 4 represents the families Discinaceae, Helvellaceae, Morchellaceae, Tuberaceae and Underwoodia columnaris lineage. Clade 5 includes Chorioactidaceae, Sarcoscyphaceae and Sarcosomataceae and Clade 6 comprises Ascodesmidaceae, Glaziellaceae, Otideaceae, Pseudombrophilaceae, Pulvinulaceae, Pyronemataceae, Strobiloscyphaceae and Tarzettaceae. New sequence data belonging to ITS, LSU, SSU, TEF, RPB2 gene regions from 40 pezizalian species are provided here. The paper provides a working document for apothecial Pezizomycetes which can be modified as new data comes to light. It is hoped that by illustrating taxa we provide stimulation and interest in the operculate discomycetes, so that further research is carried out on this remarkable, but poorly studied group of fungi.

Journal ArticleDOI
TL;DR: The chemical structures of seven novel complex azaphilone pigments, for which the authors propose the trivial names rutilins C-D and fragirubrins A-E, were elucidated using spectral methods (NMR and CD spectroscopy, high resolution mass spectrometry).
Abstract: Fungal stromata were recently discovered in association with charcoal and burnt soil aggregates during an archaeological survey in the Châtillon-sur-Seine forest massif. The wood and soil in the samples were dated to the medieval period (between 738 and 1411 AD). Light microscopy and scanning electron microscopy revealed that a few of the stromatal fragments still contained ascospores. Their macromorphological characters were described and secondary metabolite profiles were generated using high performance liquid chromatography with diode array and mass spectrometric detection (HPLC–DAD/MS). The combination of these two data lines then allowed species identification. Most of the fragments were assigned to Hypoxylon fragiforme, the type species of the Hypoxylaceae (Xylariales). Two further species whose stromata grew on the fossil charcoal could be tentatively identified as Jackrogersella cohaerens and (more tentatively) as Hypoxylon vogesiacum. These three species are still commonly encountered in the forests of Central Europe today. Furthermore, the HPLC-HRMS data of H. fragiforme suggested the presence of unknown azaphilone dimers and of further new pigments. These archaeological compounds were compared to fresh stromata of H. fragiforme collected in Germany and subjected to the same analytical protocol. While the major components in both samples were identified as the known mitorubrin type azaphilones and orsellinic acid, the chemical structures of seven novel complex azaphilone pigments, for which we propose the trivial names rutilins C-D and fragirubrins A-E, were elucidated using spectral methods (NMR and CD spectroscopy, high resolution mass spectrometry). It appears that these pigments had indeed persisted for millennia in the fossil stromata.

Journal ArticleDOI
TL;DR: The power of genome-scale data sets to resolve long-standing, ambiguous phylogenetic relationships of Lichen-forming fungi is demonstrated and the topology inferred in this study will provide a valuable framework for better understanding diversification in the most diverse lineage of lichen-forms fungi, Parmeliaceae.
Abstract: Phylogenomic datasets continue to enhance our understanding of evolutionary relationships in many lineages of organisms. However, genome-scale data have not been widely implemented in reconstructing relationships in lichenized fungi. Here we generate a data set comprised of 2556 single-copy protein-coding genes to reconstruct previously unresolved relationships in the most diverse family of lichen-forming fungi, Parmeliaceae. Our sampling included 51 taxa, mainly from the subfamily Parmelioideae, and represented six of the seven previously identified major clades within the family. Our results provided strong support for the monophyly of each of these major clades and most backbone relationships in the topology were recovered with high nodal support based on concatenated dataset and species tree analyses. The alectorioid clade was strongly supported as sister-group to all remaining clades, which were divided into two major sister-groups. In the first major clade the anzioid and usneoid clades formed a strongly supported sister-group relationship with the cetrarioid + hypogymnioid group. The sister-group relationship of Evernia with the cetrarioid clade was also strongly supported, whereas that between the anzioid and usneoid clades needs further investigation. In the second major clade Oropogon and Platismatia were sister to the parmelioid group, while the position of Omphalora was not fully resolved. This study demonstrates the power of genome-scale data sets to resolve long-standing, ambiguous phylogenetic relationships of lichen-forming fungi. Furthermore, the topology inferred in this study will provide a valuable framework for better understanding diversification in the most diverse lineage of lichen-forming fungi, Parmeliaceae.

Journal ArticleDOI
TL;DR: The analysis of ITS rDNA as well as a combined dataset including 18S and 28S rDNA, tef1 and rpb2 data, support significantly a shared monophyletic origin of the genera Pseudoclitocybe, Musumecia and Pogonoloma, and the species Clitocybe alexandri and C. harperi.
Abstract: A new classification of several clitocyboid taxa is here proposed to accommodate results from multigenic phylogenetic inference. The analysis of ITS rDNA as well as a combined dataset including 18S and 28S rDNA, tef1 and rpb2 data, support significantly a shared monophyletic origin of the genera Pseudoclitocybe, Musumecia and Pogonoloma, and the species Clitocybe alexandri and C. harperi. The new family Pseudoclitocybaceae is here proposed to name this clade, characterized by the presence of loop-like clamp connections in most species, absence of cystidia, and parallel hymenophoral trama with broad, cylindrical hyphae with intracellular granulations. The new genera Clitopaxillus and Harmajaea are proposed to accommodate the type species C. alexandri and H. harperi, as well as the combination H. wellsiae. In addition, two new species are described: C. fibulatus has a differential distribution of clamp connections in the basidiome, while H. guldeniae is, by now, an exclusively European taxon with brownish pileus, somewhat decurrent gills, ovoid spores and basidia longer than those of H. harperi. Finally, the species concept within Pseudoclitocybe and Pogonoloma is discussed and descriptions of the most representative species are provided.