scispace - formally typeset
B

Bin Ren

Researcher at Xiamen University

Publications -  528
Citations -  30728

Bin Ren is an academic researcher from Xiamen University. The author has contributed to research in topics: Raman spectroscopy & Surface-enhanced Raman spectroscopy. The author has an hindex of 73, co-authored 470 publications receiving 23452 citations. Previous affiliations of Bin Ren include Pacific Northwest National Laboratory & Max Planck Society.

Papers
More filters
Journal ArticleDOI

Shell-isolated nanoparticle-enhanced Raman spectroscopy

TL;DR: Shell-isolated nanoparticle-enhanced Raman spectroscopy is reported, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell, which significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.
Journal ArticleDOI

Present and Future of Surface-Enhanced Raman Scattering

Judith Langer, +64 more
- 28 Jan 2020 - 
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Journal ArticleDOI

Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

TL;DR: A review of the plasmon-enhanced Raman spectroscopy (PERS) field can be found in this paper, where a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials are discussed.
Journal ArticleDOI

Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges

TL;DR: An outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution is given.
Journal ArticleDOI

When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement.

TL;DR: It is demonstrated in this paper that a laser with a power level considered to be low in the traditional SERS measurement can already lead to a significant surface reaction.