scispace - formally typeset
Search or ask a question

Showing papers by "Chad Nusbaum published in 2002"


Journal ArticleDOI
Robert H. Waterston1, Kerstin Lindblad-Toh2, Ewan Birney, Jane Rogers3  +219 moreInstitutions (26)
05 Dec 2002-Nature
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Abstract: The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

6,643 citations


Journal ArticleDOI
TL;DR: The complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A, is reported, which indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth.
Abstract: The Archaea remain the most poorly understood domain of life despite their importance to the biosphere. Methanogenesis, which plays a pivotal role in the global carbon cycle, is unique to the Archaea. Each year, an estimated 900 million metric tons of methane are biologically produced, representing the major global source for this greenhouse gas and contributing significantly to global warming (Schlesinger 1997). Methanogenesis is critical to the waste-treatment industry and biologically produced methane also represents an important alternative fuel source. At least two-thirds of the methane in nature is derived from acetate, although only two genera of methanogens are known to be capable of utilizing this substrate. We report here the first complete genome sequence of an acetate-utilizing (acetoclastic) methanogen, Methanosarcina acetivorans C2A. The Methanosarcineae are metabolically and physiologically the most versatile methanogens. Only Methanosarcina species possess all three known pathways for methanogenesis (Fig. ​(Fig.1)1) and are capable of utilizing no less than nine methanogenic substrates, including acetate. In contrast, all other orders of methanogens possess a single pathway for methanogenesis, and many utilize no more than two substrates. Among methanogens, the Methanosarcineae also display extensive environmental diversity. Individual species of Methanosarcina have been found in freshwater and marine sediments, decaying leaves and garden soils, oil wells, sewage and animal waste digesters and lagoons, thermophilic digesters, feces of herbivorous animals, and the rumens of ungulates (Zinder 1993). Figure 1 Three pathways for methanogenesis. Methanogenesis is a form of anaerobic respiration using a variety of one-carbon (C-1) compounds or acetic acid as a terminal electron acceptor. All three pathways converge on the reduction of methyl-CoM to methane (CH ... The Methanosarcineae are unique among the Archaea in forming complex multicellular structures during different phases of growth and in response to environmental change (Fig. ​(Fig.2).2). Within the Methanosarcineae, a number of distinct morphological forms have been characterized, including single cells with and without a cell envelope, as well as multicellular packets and lamina (Macario and Conway de Macario 2001). Packets and lamina display internal morphological heterogeneity, suggesting the possibility of cellular differentiation. Moreover, it has been suggested that cells within lamina may display differential production of extracellular material, a potential form of cellular specialization (Macario and Conway de Macario 2001). The formation of multicellular structures has been proposed to act as an adaptation to stress and likely plays a role in the ability of Methanosarcina species to colonize diverse environments. Figure 2 Different morphological forms of Methanosarcina acetivorans. Thin-section electron micrographs showing M. acetivorans growing as both single cells (center of micrograph) and within multicellular aggregates (top left, bottom right). Cells were harvested ... Significantly, powerful methods for genetic analysis exist for Methanosarcina species. These tools include plasmid shuttle vectors (Metcalf et al. 1997), very high efficiency transformation (Metcalf et al. 1997), random in vivo transposon mutagenesis (Zhang et al. 2000), directed mutagenesis of specific genes (Zhang et al. 2000), multiple selectable markers (Boccazzi et al. 2000), reporter gene fusions (M. Pritchett and W. Metcalf, unpubl.), integration vectors (Conway de Macario et al. 1996), and anaerobic incubators for large-scale growth of methanogens on solid media (Metcalf et al. 1998). Furthermore, and in contrast to other known methanogens, genetic analysis can be used to study the process of methanogenesis: Because Methanosarcina species are able to utilize each of the three known methanogenic pathways, mutants in a single pathway are viable (M. Pritchett and W. Metcalf, unpubl.). The availability of genetic methods allowing immediate exploitation of genomic sequence, coupled with the genetic, physiological, and environmental diversity of M. acetivorans make this species an outstanding model organism for the study of archaeal biology. For these reasons, we set out to study the genome of M. acetivorans.

626 citations


Journal ArticleDOI
TL;DR: Myxococcus xanthus dsp and dif mutants have similar phenotypes in that they are deficient in social motility and fruiting body development and found that 16 of the 18 dsp alleles map to the dif genes.
Abstract: Myxococcus xanthus dsp and dif mutants have similar phenotypes in that they are deficient in social motility and fruiting body development. We compared the two loci by genetic mapping, complementation with a cosmid clone, DNA sequencing, and gene disruption and found that 16 of the 18 dsp alleles map to the dif genes. Another dsp allele contains a mutation in the sglK gene. About 36.6 kb around the dsp-dif locus was sequenced and annotated, and 50% of the genes are novel.

33 citations